Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Artificial intelligence and colon capsule endoscopy: development of an automated diagnostic system of protruding lesions in colon capsule endoscopy

Artificial intelligence and colon capsule endoscopy: development of an automated diagnostic system of protruding lesions in colon capsule endoscopy

Título
Artificial intelligence and colon capsule endoscopy: development of an automated diagnostic system of protruding lesions in colon capsule endoscopy
Tipo
Artigo em Revista Científica Internacional
Ano
2021
Autores
Helder Cardoso
(Autor)
FMUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Sem AUTHENTICUS Sem ORCID
Parente, MPL
(Autor)
FEUP
Revista
Vol. 25
Páginas: 1243-1248
ISSN: 1123-6337
Editora: Springer Nature
Outras Informações
ID Authenticus: P-00V-D92
Abstract (EN): Background Colon capsule endoscopy (CCE) is a minimally invasive alternative for patients unwilling to undergo conventional colonoscopy, or for whom the latter exam is contraindicated. This is particularly important in the setting of colorectal cancer screening. Nevertheless, these exams produce large numbers of images, and reading them is a monotonous and time-consuming task, with the risk of overlooking important lesions. The development of automated tools based on artificial intelligence (AI) technology may improve some of the drawbacks of this diagnostic instrument. Methods A database of CCE images was used for development of a Convolutional Neural Network (CNN) model. This database included anonymized images of patients with protruding lesions in the colon or patients with normal colonic mucosa or with other pathologic findings. A total of 3,387,259 frames from 24 CCE exams were retrospectively reviewed. For CNN development, 3640 images (860 protruding lesions and 2780 with normal mucosa or other findings) were ultimately extracted. Training and validation datasets were constructed for the development and testing of the CNN. Results The CNN detected protruding lesions with a sensitivity, specificity, positive and negative predictive values of 90.7, 92.6, 79.2 and 96.9%, respectively. The area under the receiver operating characteristic curve for detection of protruding lesions was 0.97. Conclusions The deep learning algorithm we developed is capable of accurately detecting protruding lesions. The application of AI technology to CCE may increase its diagnostic accuracy and acceptance for screening of colorectal neoplasia.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 6
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Rectal ischaemia after stapled hemorrhoidopexy causing pain or bleeding: report of three cases (2014)
Outra Publicação em Revista Científica Internacional
Rodrigues Pinto, E; Sarmento, JA; Azevedo, F; Macedo G
Surface anatomical landmarks for the location of posterior sacral foramina in sacral nerve stimulation (2016)
Artigo em Revista Científica Internacional
Povo, A; Arantes, M; Matzel, KE; Barbosa, J; tavares, ma; Pais, D; Rodriguez Baeza, A
Artificial intelligence and high-resolution anoscopy: automatic identification of anal squamous cell carcinoma precursors using a convolutional neural network (2022)
Artigo em Revista Científica Internacional
Saraiva, MM; Spindler, L; Fathallah, N; Beaussier, H; Mamma, C; Quesnee, M; Ribeiro, T; Afonso, J; Carvalho, M; Moura, R; Andrade, P; Cardoso, H; Adam, J; Ferreira, J; Macedo, G; de Parades, V
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-07-31 às 20:23:13 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico