Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Beach Hydromorphological Analysis Through Remote Sensing

Beach Hydromorphological Analysis Through Remote Sensing

Título
Beach Hydromorphological Analysis Through Remote Sensing
Tipo
Artigo em Revista Científica Internacional
Ano
2011
Autores
Ana Teodoro
(Autor)
FCUP
Joaquim Pais Barbosa
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Francisco Taveira Pinto
(Autor)
FEUP
Revista
Vol. 61
Páginas: 44-51
ISSN: 0749-0208
Indexação
Classificação Científica
FOS: Ciências exactas e naturais > Ciências da terra e ciências do ambiente
Outras Informações
ID Authenticus: P-002-W44
Abstract (EN): TEODORO, A., PAIS-BARBOSA, J., GONCALVES, H., VELOSO-GOMES, F and TAVEIRA-PINTO, F., 2011. Beach Hydromorphological Analysis Through Remote Sensing. In: Micallef, A. (ed.), MCRR3-2010 Conference Proceedings, Journal of Coastal Research, Special Issue, No. 61, pp. 44-51. Grosseto, Tuscany, Italy, ISSN 0749-0208. Beach hydromorphological classification is a complex subject. Different beach classification models were presented by several authors. However, fundamental parameters are usually unavailable. Therefore, a morphological analysis using remotely sensed data and image processing techniques is a good approach to identify and to classify beach hydromorphologies. Remote sensing data is an increasingly important component of natural resources monitoring programs. Its usefulness can be maximized by understanding the constraints and capabilities of the imagery and change detection techniques, related to the monitoring objectives. The aim of this study was to explore different remotely sensed data (aerial photographs and a satellite image) and different image processing algorithms in order to identify coastal forms/patterns and further classify beach hydromorphological stage. To achieve that, different image processing techniques were applied to remotely sensed data: pixel and object-based classification algorithms and a pattern recognition approach using artificial neural networks. A stretch of the northwest coast of Portugal was chosen as the study area. The data used in this study consisted in aerial photographs and an IKONOS-2 image. Based on the obtained results two main conclusions could be taken: the pixel-based classification (supervised classification algorithms) showed better results than the object-based classification algorithms; and the pattern recognition approach is the most effective and accurate methodology. Therefore, the association of remote sensing data and image processing techniques is very useful in identifying coastal forms/patterns regarding the classification of beach morphological stage.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Contacto: amteodor@fc.up.pt; jpbarbosa@fc.up.pt; hemani.goncalves@fc.up.pt; vgomes@fe.up.pt; fpinto@fe.up.pt
Nº de páginas: 8
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Unmanned Air Vehicles for Coastal and Environmental Research (2009)
Artigo em Revista Científica Internacional
Pereira, E; R. A. G. Bencatel; Correia, J; Felix, L; Gil Manuel Gonçalves; Morgado, J; João Tasso Sousa
The Use of the GPS in the Identification of Fossil Shore Platforms and its Tectonic Deformation: an Example from the Northern Portuguese Coast. (2009)
Artigo em Revista Científica Internacional
Araújo, Maria da Assunção; Gomes, António Alberto
Sediment grain size variation on a coastal stretch facing the North Atlantic (NW Portugal) (2009)
Artigo em Revista Científica Internacional
R. Silva; P. Baptista; F. Veloso Gomes; C. Coelho; F. Taveira Pinto

Ver todas (31)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z  I Livro de Visitas
Página gerada em: 2025-06-27 às 19:18:47 | Política de Utilização Aceitável | Política de Proteção de Dados Pessoais | Denúncias