Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Network Comprehension by Clustering Streaming Sensors

Network Comprehension by Clustering Streaming Sensors

Título
Network Comprehension by Clustering Streaming Sensors
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2010
Autores
João Gama
(Autor)
FCUP
João Araújo
(Autor)
FCUP
Luís Lopes
(Autor)
FCUP
Ata de Conferência Internacional
Páginas: 35-44
4th International Workshop on Knowledge Discovery from Sensor Data (Sensor-KDD 2010)
Washington, DC, 25 - 28 July, 2010
Classificação Científica
FOS: Ciências exactas e naturais > Ciências da computação e da informação
CORDIS: Ciências Físicas > Ciência de computadores
Outras Informações
Abstract (EN): Sensor network comprehension tries to extract information about global interaction between sensors by looking at the data they produce. When no other information is available to extract, usual knowledge discovery approaches are based on unsupervised techniques. However, if these techniques require data to be gathered centrally, communication and storage requirements are often unbounded. The goal of this paper is to discuss sensor network comprehension techniques, presenting a local algorithm to compute clustering of sensors at each node, using only neighbors' centroids, as an approximation of the global clustering of streaming sensors computed by a centralized process. The clustering algorithm is based on the moving average of each node's data over time: the moving average of each node is approximated using memoryless fading average; clustering is based on the furthest point algorithm applied to the centroids computed by the node's direct neighbors. The algorithm was evaluated on a state-of-the-art sensor network simulator, measuring the agreement bewteen local and global clustering. Results show a high level of agreement between each node's clustering de nitions and the global clustering de nition, with special emphasis on separability agreement. Overall, local approaches are able to keep a good approximation of the global clustering, improving the ability to keep global network comprehension at each sensor node, with increased privacy, and decreased communication and computation load in the network.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Contacto: lmlopes@fc.up.pt
Notas: Disponível em: http://www.ornl.gov/sci/knowledgediscovery/SensorKDD-2010/SensorKDD'10_Proceedings.pdf
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Das mesmas áreas científicas

On Applying Linear Tabling to Logic Programs (2010)
Tese
MIGUEL AREIAS; Ricardo Rocha
APRIORI Algorithm for Label Ranking (2010)
Tese
Cláudio Sá; Carlos Soares; Joaquim Costa
On the average size of pd automata: an analytic combinatorics approach (2010)
Relatório Técnico
Sabine Broda; António Machiavelo; Nelma Moreira; Rogério Reis
On Covering Path Orthogonal Polygons (preliminary version) (2016)
Relatório Técnico
Ana Paula Tomás; Catarina Lobo Ferreira

Ver todas (138)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-27 às 14:02:58 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico