Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Design and Comparison of Image Hashing Methods: A Case Study on Cork Stopper Unique Identification

Design and Comparison of Image Hashing Methods: A Case Study on Cork Stopper Unique Identification

Título
Design and Comparison of Image Hashing Methods: A Case Study on Cork Stopper Unique Identification
Tipo
Artigo em Revista Científica Internacional
Ano
2021
Autores
Ricardo Fitas
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Bernardo Rocha
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Valter Costa
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Armando Jorge Sousa
(Autor)
FEUP
Revista
Título: Journal of ImagingImportada do Authenticus Pesquisar Publicações da Revista
Vol. 11
Páginas: 1-48
Editora: MDPI
Outras Informações
ID Authenticus: P-00T-JB9
Abstract (EN): Cork stoppers were shown to have unique characteristics that allow their use for authentication purposes in an anti-counterfeiting effort. This authentication process relies on the comparison between a user's cork image and all registered cork images in the database of genuine items. With the growth of the database, this one-to-many comparison method becomes lengthier and therefore usefulness decreases. To tackle this problem, the present work designs and compares hashing-assisted image matching methods that can be used in cork stopper authentication. The analyzed approaches are the discrete cosine transform, wavelet transform, Radon transform, and other methods such as difference hash and average hash. The most successful approach uses a 1024-bit hash length and difference hash method providing a 98% accuracy rate. By transforming the image matching into a hash matching problem, the approach presented becomes almost 40 times faster when compared to the literature.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 24
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Skin Cancer Image Classification Using Artificial Intelligence Strategies: A Systematic Review (2024)
Outra Publicação em Revista Científica Internacional
Vardasca, R; Joaquim Mendes; Magalhaes, C
Visible and Thermal Image-Based Trunk Detection with Deep Learning for Forestry Mobile Robotics (2021)
Artigo em Revista Científica Internacional
da Silva, DQ; Filipe Neves Santos; Armando Jorge Sousa; Filipe, V
Synthesizing Human Activity for Data Generation (2023)
Artigo em Revista Científica Internacional
Romero, A; Pedro Carvalho; Luís Corte-Real; Pereira, A
Preventing Wine Counterfeiting by Individual Cork Stopper Recognition Using Image Processing Technologies (2018)
Artigo em Revista Científica Internacional
Valter Costa; Armando Sousa; Ana Reis
Photo2Video: Semantic-Aware Deep Learning-Based Video Generation from Still Content (2022)
Artigo em Revista Científica Internacional
Viana, P; Maria Teresa Andrade; Pedro Carvalho; Vilaca, L; Teixeira, IN; Costa, T; Jonker, P

Ver todas (12)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-09 às 16:47:00 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico