Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Data mining based framework to assess solution quality for the rectangular 2D strip-packing problem

Data mining based framework to assess solution quality for the rectangular 2D strip-packing problem

Título
Data mining based framework to assess solution quality for the rectangular 2D strip-packing problem
Tipo
Artigo em Revista Científica Internacional
Ano
2019
Autores
Alvaro Neuenfeldt Júnior
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Elsa Silva
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Carlos Soares
(Autor)
FEUP
Revista
Vol. 118
Páginas: 365-380
ISSN: 0957-4174
Editora: Elsevier
Outras Informações
ID Authenticus: P-00P-RAK
Abstract (EN): In this paper, we explore the use of reference values (predictors) for the optimal objective function value of hard combinatorial optimization problems, instead of bounds, obtained by data mining techniques, and that may be used to assess the quality of heuristic solutions for the problem. With this purpose, we resort to the rectangular two-dimensional strip-packing problem (2D-SPP), which can be found in many industrial contexts. Mostly this problem is solved by heuristic methods, which provide good solutions. However, heuristic approaches do not guarantee optimality, and lower bounds are generally used to give information on the solution quality, in particular, the area lower bound. But this bound has a severe accuracy problem. Therefore, we propose a data mining-based framework capable of assessing the quality of heuristic solutions for the 2D-SPP. A regression model was fitted by comparing the strip height solutions obtained with the bottom-left-fill heuristic and 19 predictors provided by problem characteristics. Random forest was selected as the data mining technique with the best level of generalisation for the problem, and 30,000 problem instances were generated to represent different 2D-SPP variations found in real-world applications. Height predictions for new problem instances can be found in the regression model fitted. In the computational experimentation, we demonstrate that the data mining-based framework proposed is consistent, opening the doors for its application to finding predictions for other combinatorial optimisation problems, in particular, other cutting and packing problems. However, how to use a reference value instead of a bound, has still a large room for discussion and innovative ideas. Some directions for the use of reference values as a stopping criterion in search algorithms are also provided.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 16
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Towards a data privacy-predictive performance trade-off (2023)
Outra Publicação em Revista Científica Internacional
Carvalho, T; Moniz, N; Faria, P; antunes, l
Learning path personalization and recommendation methods: A survey of the state-of-the-art (2020)
Outra Publicação em Revista Científica Internacional
Nabizadeh, AH; José Paulo Leal; Rafsanjani, HN; Shah, RR
Time-evolving O-D matrix estimation using high-speed GPS data streams (2016)
Artigo em Revista Científica Internacional
Luís Moreira-Matias; João Gama; Michel Ferreira; João Mendes-Moreira; Luís Damas
Three-dimensional guillotine cutting problems with constrained patterns: MILP formulations and a bottom-up algorithm (2021)
Artigo em Revista Científica Internacional
Mateus Martin; José Fernando Oliveira; Elsa Silva; Reinaldo Morabito; Pedro Munari
The 'Healthcare Access and Quality Index' revisited: A fuzzy data envelopment analysis approach (2024)
Artigo em Revista Científica Internacional
Pereira, MA; Ana Maria Cunha Ribeiro dos Santos Ponces Camanho

Ver todas (53)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-07-31 às 21:10:11 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico