Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Can user and task characteristics be used as predictors of success in health information retrieval sessions?

Can user and task characteristics be used as predictors of success in health information retrieval sessions?

Título
Can user and task characteristics be used as predictors of success in health information retrieval sessions?
Tipo
Artigo em Revista Científica Internacional
Ano
2018
Autores
Melinda Oroszlányová
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Carla Teixeira Lopes
(Autor)
FEUP
Sérgio Nunes
(Autor)
FEUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Cristina Ribeiro
(Autor)
FEUP
Revista
Título: Information ResearchImportada do Authenticus Pesquisar Publicações da Revista
Vol. 23
Páginas: 1-15
ISSN: 1368-1613
Indexação
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citações
Publicação em ISI Web of Science ISI Web of Science
INSPEC
Outras Informações
ID Authenticus: P-00P-NVE
Resumo (PT):
Abstract (EN): Introduction. The concept and study of relevance has been a central subject in information science. Although research in information retrieval has been focused on topical relevance, other kinds of relevance are also important and justify further study. Motivational relevance is typically inferred by criteria such as user satisfaction and success. Method. Using an existing dataset composed by an annotated set of health Web documents assessed for relevance and comprehension by a group of users, we build a multivariate prediction model for the motivational relevance of search sessions. Analysis. The analysis was based on lasso variable selection, followed by model selection using multiple logistic regression. Results. We have built two regression models; the full model, which considers all variables of the dataset, has a lower estimated prediction error than the reduced model, which contains the statistically-significant variables from the full model. The higher values of evaluation metrics, including accuracy, specificity and sensitivity in the full model support this finding. The full model has an accuracy of 91.94%, and is better at predicting motivational relevance. Conclusions. Our findings suggest features that can be considered by search engines to estimate motivational relevance, to be used in addition to topical relevance. Among these features, a high level of success in Web search and in health information search on social networks and chats are some of the most influencing user features. This shows that users with higher computer literacy might feel more satisfied and successful after completing the search tasks. In terms of task features, the results suggest that users with clearer goals feel more successful. Moreover, results show that users would benefit from the help of the system in clarifying the retrieved documents.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 15
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

Predicting the quality of health web documents using their characteristics (2018)
Artigo em Revista Científica Internacional
Melinda Oroszlányová; Carla Teixeira Lopes; Sérgio Nunes; Cristina Ribeiro
The Influence of Documents, Users and Tasks on the Relevance and Comprehension of Health Web Documents (2015)
Artigo em Livro de Atas de Conferência Internacional
Melinda Oroszlányová; Cristina Ribeiro; Sérgio Nunes; Carla Teixeira Lopes

Da mesma revista

The impact of time in link-based Web ranking (2013)
Artigo em Revista Científica Internacional
Sérgio Nunes; Cristina Ribeiro; Gabriel David
A classification scheme for analyses of messages exchanged in online health forums (2019)
Artigo em Revista Científica Internacional
Carla Teixeira Lopes; Bárbara Guimarães da Silva
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-07-24 às 15:42:59 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico