Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Estimating reliability for assessing and correcting individual streaming predictions

Estimating reliability for assessing and correcting individual streaming predictions

Título
Estimating reliability for assessing and correcting individual streaming predictions
Tipo
Capítulo ou Parte de Livro
Ano
2012
Autores
Bosni¿, Z
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
João Gama
(Autor)
FEP
Kononenko, I
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Livro
Páginas: 29-49
ISBN: 9781461419037; 9781461419020
Indexação
Outras Informações
ID Authenticus: P-00K-DXF
Abstract (EN): Several predictive systems are nowadays vital for operations and decision support. The quality of these systems is most of the time defined by their average accuracy which has low or no information at all about the estimated error of each individual prediction. In these cases, users should be allowed to associate a measure of reliability to each prediction. However, with the advent of data streams, batch state-of-the-art reliability estimates need to be redefined. In this chapter we adapt and evaluate five empirical measures for online reliability estimation of individual predictions: similarity-based (k-NN) error, local sensitivity (bias and variance) and online bagging predictions (bias and variance). Evaluation is performed with a neural network base model on two different problems, with results showing that online bagging and k-NN estimates are consistently correlated with the error of the base model. Furthermore, we propose an approach for correcting individual predictions based on the CNK reliability estimate. Evaluation is done on a real-world problem (prediction of the electricity load for a selected European geographical region), using two different regression models: neural network and the k nearest neighbors algorithm. Comparison is performed with corrections based on the Kalman filter. The results show that our method performs better than the Kalman filter, significantly improving the original predictions to more accurate values.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Documentos
Não foi encontrado nenhum documento associado à publicação.
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-26 às 23:13:18 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico