Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > A Data Mining Approach to Predict Falls in Humanoid Robot Locomotion

A Data Mining Approach to Predict Falls in Humanoid Robot Locomotion

Título
A Data Mining Approach to Predict Falls in Humanoid Robot Locomotion
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2016
Autores
Andre, J
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Faria, BM
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Santos, C
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Ata de Conferência Internacional
Páginas: 273-285
2nd Iberian Robotics Conference (ROBOT)
Lisbon, PORTUGAL, NOV 19-21, 2015
Indexação
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citações
Publicação em Scopus Scopus - 0 Citações
Outras Informações
ID Authenticus: P-00K-2AX
Abstract (EN): The inclusion of perceptual information in the operation of a dynamic robot (interacting with its environment) can provide valuable insight about its environment and increase robustness of its behaviour. In this regard, the concept of Associative Skill Memories (ASMs) has provided a great contributions regarding an effective and practical use of sensor data, under a simple and intuitive framework [2, 13]. Inspired by [2], this paper presents a data mining solution to the fall prediction problem in humanoid biped robotic locomotion. Sensor data from a large number of simulations was recorded and four data mining algorithms were applied with the aim of creating a classifier that properly identifies failure conditions. Using Support Vector Machines, on top of sensor data from a large number of simulation trials, it was possible to build an accurate and reliable offline fall predictor, achieving accuracy, sensitivity and specificity values up to 95.6%, 96.3% and 94.5%, respectively.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 13
Documentos
Não foi encontrado nenhum documento associado à publicação.
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-06 às 01:23:25 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico