Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Machine Learning Data Markets: Trading Data using a Multi-Agent System

Machine Learning Data Markets: Trading Data using a Multi-Agent System

Título
Machine Learning Data Markets: Trading Data using a Multi-Agent System
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2022
Autores
Baghcheband, H
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Carlos Soares
(Autor)
FEUP
Outras Informações
ID Authenticus: P-00Y-D1F
Abstract (EN): The amount of data produced by distributed devices, such as smart devices and the IoT, is increasing continuously. The cost of transmitting data and also distributed computing power raise interest in distributed data mining (DDM). However, in a pure DDM scenario, data availability may not be enough to generate reliable models in a distributed environment. So, the ability to exchange data efficiently and effectively will become a crucial component of DDM. In this paper, we propose the concept of the Machine Learning Data Market (MLDM), a framework for the exchange of data among autonomous agents. We consider a set of learning agents in a cooperative distributed ML, where agents negotiate data to improve the models they use locally. In the proposed data market, the system's predictive accuracy is investigated, as well as the economic value of data. The question addressed in this paper is: How data exchange among the agents will improve the accuracy of the learning model. Agent budget is defined as a limitation of negotiation. We defined a multi-agent system with negotiation and assessed it against the multi-agent system baseline and the single-agent system. The proposed framework is analyzed based on the different sizes of batch data collected over time to find out how this changes the effect of the negotiation on the accuracy of the model. The results indicate that even simple negotiation among agents increases their learning accuracy.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 8
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

Machine Learning Data Market Based on Multiagent Systems (2024)
Artigo em Revista Científica Internacional
Baghcheband, H; Carlos Soares; reis, lp
Shapley-Based Data Valuation Method for the Machine Learning Data Markets (MLDM) (2024)
Artigo em Livro de Atas de Conferência Internacional
Baghcheband, H; Carlos Soares; reis, lp
Machine Learning Data Markets: Evaluating the Impact of Data Exchange on the Agent Learning Performance (2023)
Artigo em Livro de Atas de Conferência Internacional
Baghcheband, H; Carlos Soares; reis, lp
CNP-MLDM: Contract Net Protocol for Negotiation in Machine Learning Data Market (2024)
Artigo em Livro de Atas de Conferência Internacional
Baghcheband, H; Carlos Soares; reis, lp
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-11-16 às 11:46:56 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico