Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Dynamic graph summarization: a tensor decomposition approach

Dynamic graph summarization: a tensor decomposition approach

Título
Dynamic graph summarization: a tensor decomposition approach
Tipo
Artigo em Revista Científica Internacional
Ano
2018
Autores
Fernandes, S
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Fanaee T, H
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
João Gama
(Autor)
FEP
Revista
Vol. 32
Páginas: 1397-1420
ISSN: 1384-5810
Editora: Springer Nature
Outras Informações
ID Authenticus: P-00P-31F
Abstract (EN): Due to the scale and complexity of todays' social networks, it becomes infeasible to mine them with traditional approaches. A possible solution to reduce such scale and complexity is to produce a compact (lossy) version of the network that represents its major properties. This task is known as graph summarization, which is the subject of this research. Our focus is on time-evolving graphs, a more complex scenario where the dynamics of the network also should be taken into account. We address this problem using tensor decomposition, which enables us to capture the multi-way structure of the time-evolving network. This property is unique and is impossible to obtain with other approaches such as matrix factorization. Experimental evaluation on five real world networks implies promising results demonstrating that tensor decomposition is quite useful for summarizing dynamic networks.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 24
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

WINTENDED: WINdowed TENsor decomposition for Densification Event Detection in time-evolving networks (2023)
Artigo em Revista Científica Internacional
Fernandes, S; Fanaee T, H; João Gama; Tisljaric, L; Smuc, T
Tensor decomposition for analysing time-evolving social networks: an overview (2021)
Artigo em Revista Científica Internacional
Fernandes, S; Fanaee T, H; João Gama
NORMO: A new method for estimating the number of components in CP tensor decomposition (2020)
Artigo em Revista Científica Internacional
Fernandes, S; Fanaee T, H; João Gama

Da mesma revista

Guest editors introduction: special issue of the ECMLPKDD 2015 journal track (2015)
Outra Publicação em Revista Científica Internacional
Bielza, C; João Gama; Jorge, AM; Zliobaite, I
Guest Editorial: Special Issue on Data Mining for Geosciences (2019)
Outra Publicação em Revista Científica Internacional
Jorge, AM; Lopes, RL; Larrazabal, G; Nikhalat Jahromi, H
Very fast decision rules for classification in data streams (2015)
Artigo em Revista Científica Internacional
Kosina, P; João Gama
Probabilistic change detection and visualization methods for the assessment of temporal stability in biomedical data quality (2015)
Artigo em Revista Científica Internacional
Carlos Saez; Pedro Pereira Rodrigues; João Gama; Montserrat Robles; Juan M Garcia Gomez
Novel features for time series analysis: a complex networks approach (2022)
Artigo em Revista Científica Internacional
Silva, VF; Maria Eduarda Silva; Pedro Ribeiro; Silva, F

Ver todas (14)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-07-31 às 02:47:34 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico