Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Compressive Spatio-Temporal Forecasting of Meteorological Quantities and Photovoltaic Power

Compressive Spatio-Temporal Forecasting of Meteorological Quantities and Photovoltaic Power

Título
Compressive Spatio-Temporal Forecasting of Meteorological Quantities and Photovoltaic Power
Tipo
Artigo em Revista Científica Internacional
Ano
2016
Autores
Tascikaraoglu, A
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Sanandaji, BM
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Chicco, G
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Cocina, V
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Spertino, F
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Erdinc, O
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Paterakis, NG
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Revista
Vol. 7
Páginas: 1295-1305
ISSN: 1949-3029
Editora: IEEE
Outras Informações
ID Authenticus: P-00K-KS8
Abstract (EN): This paper presents a solar power forecasting scheme, which uses spatial and temporal time series data along with a photovoltaic (PV) power conversion model. The PV conversion model uses the forecast of three different variables, namely, irradiance on the tilted plane, ambient temperature, and wind speed, in order to estimate the power produced by a PV plant at the grid connection terminals. The forecast values are obtained using a spatio-temporal method that uses the data recorded from a target meteorological station as well as data of its surrounding stations. The proposed forecasting method exploits the sparsity of correlations between time series data in a collection of stations. The performance of both the PV conversion model and the spatio-temporal algorithm is evaluated using high-resolution real data recorded in various locations in Italy. Comparison with other benchmark methods illustrates that the proposed method significantly improves the solar power forecasts, particularly over short-term horizons.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 11
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

A Short-Term Spatio-Temporal Approach for Photovoltaic Power Forecasting (2016)
Artigo em Livro de Atas de Conferência Internacional
Tascikaraoglu, A; Sanandaji, BM; Chicco, G; Cocina, V; Spertino, F; Erdinc, O; Paterakis, NG; Catalao, JPS

Da mesma revista

Guest Editorial Special Section on Reserve and Flexibility for Handling Variability and Uncertainty of Renewable Generation (2016)
Outra Publicação em Revista Científica Internacional
Catalao, JPS; Contreras, J; Bakirtzis, A; Wang, JH; Zareipour, H; Wu, L
Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting (2012)
Artigo em Revista Científica Internacional
Ricardo Bessa; Vladimiro Miranda; Audun Botterud; Jianhui Wang; Emil Constantinescu
Smart Wire Placement to Facilitate Large-Scale Wind Energy Integration: An Adaptive Robust Approach (2019)
Artigo em Revista Científica Internacional
Ahmad Nikoobakht; Jamshid Aghaei; Taher Niknam; Miadreza Shafie-khah ; João P. S. Catalão
Self-Scheduling Approach to Coordinating Wind Power Producers With Energy Storage and Demand Response (2020)
Artigo em Revista Científica Internacional
Jamali, A; Aghaei, J; Esmaili, M; Nikoobakht, A; Niknam, T; Shafie khah, M; Catalao, JPS
Risk-Oriented Multi-Area Economic Dispatch Solution With High Penetration of Wind Power Generation and Compressed Air Energy Storage System (2020)
Artigo em Revista Científica Internacional
Azizivahed, A; Razavi, SE; Arefi, A; Ghadi, MJ; Li, L; Zhang, JF; Shafie khan, M; Catalao, JPS

Ver todas (46)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-10-02 às 17:53:56 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico