Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Studying the robustness of data imputation methodologies against adversarial attacks

Studying the robustness of data imputation methodologies against adversarial attacks

Título
Studying the robustness of data imputation methodologies against adversarial attacks
Tipo
Artigo em Revista Científica Internacional
Ano
2025
Autores
Mangussi, AD
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Pereira, RC
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Lorena, AC
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Santos, MS
(Autor)
FCUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Abreu, PH
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Revista
Título: COMPUTERS & SECURITYImportada do Authenticus Pesquisar Publicações da Revista
Vol. 157
ISSN: 0167-4048
Outras Informações
ID Authenticus: P-019-K5C
Abstract (EN): Cybersecurity attacks, such as poisoning and evasion, can intentionally introduce false or misleading information in different forms into data, potentially leading to catastrophic consequences for critical infrastructures, like water supply or energy power plants. While numerous studies have investigated the impact of these attacks on model-based prediction approaches, they often overlook the impurities present in the data used to train these models. One of those forms is missing data, the absence of values in one or more features. This issue is typically addressed by imputing missing values with plausible estimates, which directly impacts the performance of the classifier. The goal of this work is to promote a Data-centric AI approach by investigating how different types of cybersecurity attacks impact the imputation process. To this end, we conducted experiments using four popular evasion and poisoning attacks strategies across 29 real-world datasets, including the NSL-KDD and Edge-IIoT datasets, which were used as case study. For the adversarial attack strategies, we employed the Fast Gradient Sign Method, Carlini & Wagner, Project Gradient Descent, and Poison Attack against Support Vector Machine algorithm. Also, four state-of-the-art imputation strategies were tested under Missing Not At Random, Missing Completely at Random, and Missing At Random mechanisms using three missing rates (5%, 20%, 40%). We assessed imputation quality using MAE, while data distribution shifts were analyzed with the Kolmogorov-Smirnov and Chi-square tests. Furthermore, we measured classification performance by training an XGBoost classifier on the imputed datasets, using F1-score, Accuracy, and AUC. To deepen our analysis, we also incorporated six complexity metrics to characterize how adversarial attacks and imputation strategies impact dataset complexity. Our findings demonstrate that adversarial attacks significantly impact the imputation process. In terms of imputation assessment in what concerns to quality error, the scenario that enrolees imputation with Project Gradient Descent attack proved to be more robust in comparison to other adversarial methods. Regarding data distribution error, results from the Kolmogorov-Smirnov test indicate that in the context of numerical features, all imputation strategies differ from the baseline (without missing data) however for the categorical context Chi-Squared test proved no difference between imputation and the baseline.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 16
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Triple-Similarity Mechanism for alarm management in the cloud (2018)
Artigo em Revista Científica Internacional
Dalmazo, BL; João P. Vilela; Curado, M
Systems and methods for SPIT detection in VoIP: Survey and future directions (2018)
Artigo em Revista Científica Internacional
Azad, MA; Ricardo Morla; Salah, K
IoT security certifications: Challenges and potential approaches (2022)
Artigo em Revista Científica Internacional
Cirne, A; Sousa, PR; Resende, JS; antunes, l
Hardening cryptographic operations through the use of secure enclaves (2021)
Artigo em Revista Científica Internacional
Brandao, A; Resende, JS; Martins, R
Deterministic or probabilistic?- A survey on Byzantine fault tolerant state machine replication (2023)
Artigo em Revista Científica Internacional
Freitas, T; Soares, J; Manuel E Correia; Martins, R

Ver todas (7)

Recomendar Página Voltar ao Topo
Copyright 1996-2026 © Faculdade de Farmácia da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2026-02-17 às 01:06:28 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico