Abstract (EN):
Quasi-identifiers (QIDs) are attributes in a dataset that are not directly unique identifiers of the users/entities themselves but can be used, often in conjunction with other datasets or information, to identify individuals and thus present a privacy risk in data sharing and analysis. Identifying QIDs is important in developing proper strategies for anonymization and data sanitization. This paper proposes QIDLEARNINGLIB, a Python library that offers a set of metrics and tools to measure the qualities of QIDs and identify them in data sets. It incorporates metrics from different domains-causality, privacy, data utility, and performance-to offer a holistic assessment of the properties of attributes in a given tabular dataset. Furthermore, QIDLEARNINGLIB offers visual analysis tools to present how these metrics shift over a dataset and implements an extensible framework that employs multiple optimization algorithms such as an evolutionary algorithm, simulated annealing, and greedy search using these metrics to identify a meaningful set of QIDs.
Idioma:
Inglês
Tipo (Avaliação Docente):
Científica
Nº de páginas:
15