Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Multilayer horizontal visibility graphs for multivariate time series analysis

Multilayer horizontal visibility graphs for multivariate time series analysis

Título
Multilayer horizontal visibility graphs for multivariate time series analysis
Tipo
Artigo em Revista Científica Internacional
Ano
2025-05
Revista
Vol. 39
Página Final: 17
ISSN: 1384-5810
Editora: Springer Nature
Outras Informações
ID Authenticus: P-00X-PFW
Abstract (EN): Multivariate time series analysis is a vital but challenging task, with multidisciplinary applicability, tackling the characterization of multiple interconnected variables over time and their dependencies. Traditional methodologies often adapt univariate approaches or rely on assumptions specific to certain domains or problems, presenting limitations. A recent promising alternative is to map multivariate time series into high-level network structures such as multiplex networks, with past work relying on connecting successive time series components with interconnections between contemporary timestamps. In this work, we first define a novel cross-horizontal visibility mapping between lagged timestamps of different time series and then introduce the concept of multilayer horizontal visibility graphs. This allows describing cross-dimension dependencies via inter-layer edges, leveraging the entire structure of multilayer networks. To this end, a novel parameter-free topological measure is proposed and common measures are extended for the multilayer setting. Our approach is general and applicable to any kind of multivariate time series data. We provide an extensive experimental evaluation with both synthetic and real-world datasets. We first explore the proposed methodology and the data properties highlighted by each measure, showing that inter-layer edges based on cross-horizontal visibility preserve more information than previous mappings, while also complementing the information captured by commonly used intra-layer edges. We then illustrate the applicability and validity of our approach in multivariate time series mining tasks, showcasing its potential for enhanced data analysis and insights.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 42
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

Time series analysis via network science: Concepts and algorithms (2021)
Outra Publicação em Revista Científica Internacional
Silva, VF; Maria Eduarda Silva; Pedro Ribeiro; Silva, F
Novel features for time series analysis: a complex networks approach (2022)
Artigo em Revista Científica Internacional
Silva, VF; Maria Eduarda Silva; Pedro Ribeiro; Silva, F
Multilayer quantile graph for multivariate time series analysis and dimensionality reduction (2024)
Artigo em Revista Científica Internacional
Silva, VF; Maria Eduarda Silva; Pedro Ribeiro; Silva, F

Da mesma revista

Guest editors introduction: special issue of the ECMLPKDD 2015 journal track (2015)
Outra Publicação em Revista Científica Internacional
Bielza, C; João Gama; Jorge, AM; Zliobaite, I
Guest Editorial: Special Issue on Data Mining for Geosciences (2019)
Outra Publicação em Revista Científica Internacional
Jorge, AM; Lopes, RL; Larrazabal, G; Nikhalat Jahromi, H
Very fast decision rules for classification in data streams (2015)
Artigo em Revista Científica Internacional
Kosina, P; João Gama
Probabilistic change detection and visualization methods for the assessment of temporal stability in biomedical data quality (2015)
Artigo em Revista Científica Internacional
Carlos Saez; Pedro Pereira Rodrigues; João Gama; Montserrat Robles; Juan M Garcia Gomez
Novel features for time series analysis: a complex networks approach (2022)
Artigo em Revista Científica Internacional
Silva, VF; Maria Eduarda Silva; Pedro Ribeiro; Silva, F

Ver todas (17)

Recomendar Página Voltar ao Topo
Copyright 1996-2026 © Faculdade de Farmácia da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2026-02-07 às 17:06:06 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico