Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Measuring Variability in Acute Myocardial Infarction Coding Using a Statistical Process Control and Probabilistic Temporal Data Quality Control Approaches

Measuring Variability in Acute Myocardial Infarction Coding Using a Statistical Process Control and Probabilistic Temporal Data Quality Control Approaches

Título
Measuring Variability in Acute Myocardial Infarction Coding Using a Statistical Process Control and Probabilistic Temporal Data Quality Control Approaches
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2021
Autores
Souza, J
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Caballero, I
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Lobo, MF
(Autor)
FMUP
Pinto, A
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Viana, J
(Autor)
FMUP
Saez, C
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Freitas A
(Autor)
FMUP
Ata de Conferência Internacional
Páginas: 193-202
World Conference on Information Systems and Technologies, WorldCIST 2021
30 March 2021 through 2 April 2021
Indexação
Publicação em Scopus Scopus - 0 Citações
Outras Informações
ID Authenticus: P-00T-PSQ
Resumo (PT):
Abstract (EN): Acute Myocardial Infarction (AMI) is frequently reported when coding hospital encounters, being commonly monitored through acute care outcomes. Variability in clinical coding within hospital administrative databases, however, may indicate data quality issues and thereby negatively affect quality assessment of care delivered to AMI patients, apart from impacting health care management, decision making and research as a whole. In this study, we applied statistical process control and probabilistic temporal data quality control approaches to assess inter-hospital and temporal variability in coding AMI episodes within a nationwide Portuguese hospitalization database. The application of the present methods identified affected data distributions that can be potentially linked to data quality issues. A total of 12 out of 36 institutions substantially differed in coding AMI when compared to their peers, mostly presenting lower than expected hospitalizations of AMI. Results also indicate the existence of abnormal temporal patterns demanding additional investigation, as well as dissimilarities of temporal data batches in the periods comprising the recent transition to the International Classification of Diseases, 10th revision, Clinical Modification (ICD-10-CM) and changes in the Diagnosis-Related Group (DRG) software. Hence, the main contribution of this paper is the use of reproducible, feasible and easy-to-interpret methods that can be employed to monitor the variability in clinical coding and that could be integrated into data quality assessment frameworks. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Documentos
Não foi encontrado nenhum documento associado à publicação.
Recomendar Página Voltar ao Topo
Copyright 1996-2026 © Faculdade de Farmácia da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2026-02-16 às 03:33:53 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico