Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Pruned Sets for Multi-Label Stream Classification without True Labels

Pruned Sets for Multi-Label Stream Classification without True Labels

Título
Pruned Sets for Multi-Label Stream Classification without True Labels
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2019
Autores
Costa Junior, JD
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Faria, ER
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Silva, JA
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
João Gama
(Autor)
FEP
Cerri, R
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Ata de Conferência Internacional
2019 International Joint Conference on Neural Networks, IJCNN 2019
14 July 2019 through 19 July 2019
Indexação
Outras Informações
ID Authenticus: P-00R-589
Abstract (EN): In multi-label classification problems an example can be simultaneously classified into more than one class. This is also a challenging task in Data Streams (DS) classification, where unbounded and non-stationary distributed multi-label data contain multiple concepts that drift at different rates and patterns. In addition, the true labels of the examples may never become available and updating classification models in a supervised fashion is unfeasible. In this paper, we propose a Multi-Label Stream Classification (MLSC) method applying a Novelty Detection (ND) procedure task to update the classification model detecting any new patterns in the examples, which differ in some aspects from observed patterns, in an unsupervised fashion without any external feedback. Although ND is suitable for multi-class stream classification, it is still a not well-investigated task for multi-label problems. We improve a initial work proposed in [1] and extended it with a new Pruned Sets (PS) transformation strategy. The experiments showed that our method presents competitive performances over data sets with different concept drifts, and outperform, in some aspects, the baseline methods.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 8
Documentos
Não foi encontrado nenhum documento associado à publicação.
Recomendar Página Voltar ao Topo
Copyright 1996-2026 © Faculdade de Farmácia da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2026-02-15 às 14:34:02 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico