Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > End-to-End Supervised Lung Lobe Segmentation

End-to-End Supervised Lung Lobe Segmentation

Título
End-to-End Supervised Lung Lobe Segmentation
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2018
Autores
Filipe T. Ferreira
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Patrick Sousa
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Adrian Galdran
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Marta R. Sousa
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Aurélio Campilho
(Autor)
FEUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Ata de Conferência Internacional
Páginas: 1-8
2018 International Joint Conference on Neural Networks, IJCNN 2018
8 July 2018 through 13 July 2018
Indexação
Publicação em Scopus Scopus - 0 Citações
INSPEC
Outras Informações
ID Authenticus: P-00P-R1R
Resumo (PT):
Abstract (EN): The segmentation and characterization of the lung lobes are important tasks for Computer Aided Diagnosis (CAD) systems related to pulmonary disease. The detection of the fissures that divide the lung lobes is non-trivial when using classical methods that rely on anatomical information like the localization of the airways and vessels. This work presents a fully automatic and supervised approach to the problem of the segmentation of the five pulmonary lobes from a chest Computer Tomography (CT) scan using a Fully RegularizedV-Net (FRV- Net), a 3D Fully Convolutional Neural Network trained end-to- end. Our network was trained and tested in a custom dataset that we make publicly available. It can correctly separate the lobes even in cases when the fissure is not well delineated, achieving 0.93 in per-lobe Dice Coefficient and 0.85 in the inter-lobar Dice Coefficient in the test set. Both quantitative and qualitative results show that the proposed method can learn to produce correct lobe segmentations even when trained on a reduced dataset. © 2018 IEEE.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 8
Documentos
Não foi encontrado nenhum documento associado à publicação.
Recomendar Página Voltar ao Topo
Copyright 1996-2026 © Faculdade de Farmácia da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2026-02-22 às 14:04:45 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico