Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Spectral data augmentation for leaf nutrient uptake quantification

Publicações

Spectral data augmentation for leaf nutrient uptake quantification

Título
Spectral data augmentation for leaf nutrient uptake quantification
Tipo
Artigo em Revista Científica Internacional
Ano
2024
Autores
Martins, RC
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Queirós, C
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Silva, FM
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Barroso, TG
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Mario Cunha
(Autor)
FCUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Leao, M
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Damásio, M
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Martins, P
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Silvestre, J
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Revista
Vol. 246
Páginas: 82-95
ISSN: 1537-5110
Editora: Elsevier
Indexação
Outras Informações
ID Authenticus: P-011-391
Abstract (EN): Data scarcity is a hurdle for physiology-based precision agriculture. Measuring nutrient uptake by visible-near infrared spectroscopy implies collecting spectral and compositional data from low-throughput, such as inductively coupled plasma optical emission spectroscopy. This paper introduces data augmentation in spectroscopy by hybridisation for expanding real-world data into synthetic datasets statistically representative of the real data, allowing the quantification of macronutrients (N, P, K, Ca, Mg, and S) and micronutrients (Fe, Mn, Zn, Cu, and B). Partial least squares (PLS), local partial least squares (LocPLS), and self-learning artificial intelligence (SLAI) were used to determine the capacity to expand the knowledge base. PLS using only real-world data (RWD) cannot quantify some nutrients (N and Cu in grapevine leaves and K, Ca, Mg, S, and Cu in apple tree leaves). The synthetic dataset of the study allowed predicting real-world leaf composition of macronutrients (N, P, K, Ca, Mg and S) (Pearson coefficient correlation (R) 0.61-0.94 and standard error (SE) 0.04-0.05%) and micronutrients (Fe, Mn, Zn, Cu and B) (R 0.66-0.91 and SE 0.88-3.98 ppm) in grapevine leaves using LocPLS and SLAI. The synthetic dataset loses significance if the real-world counterpart has low representativity, resulting in poor quantifications of macronutrients (R 0.51-0.72 and SE 0.02-0.13%) and micronutrients (R 0.53-0.76 and SE 8.89-37.89 ppm), and not allowing S quantification (R = 0.37, SE = 0.01) in apple tree leaves. Representative real-world sampling makes data augmentation in spectroscopy very efficient in expanding the knowledge base and nutrient quantifications.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 14
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Satellite-based evapotranspiration of a super-intensive olive orchard: Application of METRIC algorithms (2014)
Artigo em Revista Científica Internacional
Isabel Pÿças; Teresa A Paço; Mário Cunha; José A Andrade; José Silvestre; Adélia Sousa; Francisco L Santos; Luís S Pereira; Richard G Allen
Assessing the ability of image processing software to analyse spray quality on water-sensitive papers used as artificial targets (2012)
Artigo em Revista Científica Internacional
Mario Cunha; Claudia Carvalho; Andre R S Marcal
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-12 às 18:08:47 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico