Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Load Profiles Identification Based on Autoencoders and Kohonen Maps
Mapa das Instalações
FC6 - Departamento de Ciência de Computadores FC5 - Edifício Central FC4 - Departamento de Biologia FC3 - Departamento de Física e Astronomia e Departamento GAOT FC2 - Departamento de Química e Bioquímica FC1 - Departamento de Matemática

Load Profiles Identification Based on Autoencoders and Kohonen Maps

Título
Load Profiles Identification Based on Autoencoders and Kohonen Maps
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2015
Autores
José Nuno Fidalgo
(Autor)
FEUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Progano, LR
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Indexação
Outras Informações
ID Authenticus: P-00K-C55
Abstract (EN): Load profiles are a crucial tool for power system planning and operation, and also in several operations of electricity markets. This article proposes a new methodology for the determination of load profiles based on a two-step approach. The first phase employs a neural network autoencoder to reduce the dimensionality of the input vectors. The second phase is a clustering process based on the Kohonen Self- Organizing Maps, to identify cohesive consumers' classes. The implemented approach produces classes based on load diagrams and, simultaneously, a class identification based on consumers' billing data.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 6
Documentos
Não foi encontrado nenhum documento associado à publicação.
Recomendar Página Voltar ao Topo
Copyright 1996-2026 © Faculdade de Ciências da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Última actualização: 2016-03-23 I  Página gerada em: 2026-02-15 às 22:10:01 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico