Variedades Diferenciáveis
| Áreas Científicas |
| Classificação |
Área Científica |
| OFICIAL |
Matemática |
Ocorrência: 2019/2020 - 1S 
Ciclos de Estudo/Cursos
Língua de trabalho
Inglês
Objetivos
To treat the basic theory of differential manifolds.
Resultados de aprendizagem e competências
The student should acquire a thorough knowledge of the theory of differential manifolds and be able to use its tools in mathematical problem solving and research.
Modo de trabalho
Presencial
Pré-requisitos (conhecimentos prévios) e co-requisitos (conhecimentos simultâneos)
Elements of general topology. Calculus of functions of several variables. Basic algebra.
Programa
Elements of general topology (revision): topological spaces, connectedness, compactness, quotient spaces. Differentiable manifolds, differentiable maps. Inverse images of regular values. Transversality. Sard's Theorem. Fiber bundles, tangent and cotangent bundles of a manifold. Vector fields and flows.The Lie bracket of vector fields. Lie groups and Lie algebras. Differential forms, exterior derivative. Integration on manifolds. Stokes' theorem. Elements of homological algebra; de Rham cohomology. The Poincaré Lemma. Homotopy and homotopy invariance of de Rham cohomology. Euler characteristic. The Mayer-Vietoris sequence. Degree of a map. The index of a vector field with isolated singularities and the Poincaré-Hopf Theorem. Some additional topics may be treated.
Bibliografia Obrigatória
Barden, D. and Thomas, C.; An introduction to differential manifolds, Imperial College Press, 2003
Jaques Lafontaine; An Introduction to Differential Manifolds, Springer, 2015
Bibliografia Complementar
Ib Madsen;
From calculus to cohomology. ISBN: 0-521-58956-8
Raoult Bott;
Differential forms in algebraic topology. ISBN: 0-387-90613-4
Tu, L.W.; An Introduction to Manifolds, Springer, 2008
Fulton, W.; Algebraic Topology - A First Course, Springer, 1997
Sutherland, W.A. ; Introduction to Metric and Topological Spaces, Oxford University Press, 1975
Métodos de ensino e atividades de aprendizagem
Lectures, problem sessions, student presentations.
Palavras Chave
Ciências Físicas > Matemática > Geometria
Tipo de avaliação
Avaliação por exame final
Componentes de Avaliação
| Designação |
Peso (%) |
| Exame |
100,00 |
| Total: |
100,00 |
Componentes de Ocupação
| Designação |
Tempo (Horas) |
| Estudo autónomo |
187,00 |
| Frequência das aulas |
56,00 |
| Total: |
243,00 |
Obtenção de frequência
Attendance is not compulsory.
Fórmula de cálculo da classificação final
The final mark is the mark obtained in the exam.
Avaliação especial (TE, DA, ...)
By written and/or oral exam.