Go to:
Logótipo
You are in:: Start > FIS2014

Thermal Physics

Code: FIS2014     Acronym: FIS2014

Keywords
Classification Keyword
OFICIAL Physics

Instance: 2024/2025 - 1S Ícone do Moodle

Active? Yes
Responsible unit: Department of Physics and Astronomy
Course/CS Responsible: Bachelor in Engineering Physics

Cycles of Study/Courses

Acronym No. of Students Study Plan Curricular Years Credits UCN Credits ECTS Contact hours Total Time
L:B 0 Official Study Plan 3 - 6 54 162
L:CC 1 study plan from 2021/22 2 - 6 54 162
3
L:EF 71 study plan from 2021/22 2 - 6 54 162
L:F 51 Official Study Plan 2 - 6 54 162
L:G 0 study plan from 2017/18 2 - 6 54 162
3
L:M 15 Official Study Plan 2 - 6 54 162
3
L:MA 0 Official Study Plan 3 - 6 54 162
L:Q 4 study plan from 2016/17 3 - 6 54 162

Teaching Staff - Responsibilities

Teacher Responsibility
Orfeu Bertolami Neto

Teaching - Hours

Theoretical classes: 2,31
Theoretical and practical : 1,85
Type Teacher Classes Hour
Theoretical classes Totals 1 2,308
Orfeu Bertolami Neto 2,308
Theoretical and practical Totals 3 5,538
João Manuel Viana Parente Lopes 2,692
Orfeu Bertolami Neto 1,846

Teaching language

Portuguese

Objectives

Introduction to thermal Physics. Basics on classical thermodynamics and statistical mechanics. Applications to simple classical and quantum systems.

Learning outcomes and competences

Get acquainted with the basic concepts of thermodynamics and statistical physics.

Critical reasoning and arguing capacity.

Working method

Presencial

Pre-requirements (prior knowledge) and co-requirements (common knowledge)

Familiarity with advamced Calculus.

Program

0. Introduction. Macroscopic and microscopic approaches of Thermal Physics.

1. Basics of Thermodynamics. Thermal equilibrium, the first and second principles of Thermodynamics. Reversible and irreversible transformations.  Reversible cycles and heat engines. Thermal conduction.

2. Thermodynamic potentials. Maxwell relations. Applications

3. Statistical Mechanics.

3.1. Introduction to Mathematical Statistics

3.2. Statistical description of physical systems: counting microstates, microcanonical and canonical distributions.

3.2.1.Kinetic theory of gases.Ideal gas - equilibrium properties.  Van der Waals gas.

3.2.2. Systems in thermal equilibrium - Applications. Specific heat of solids. Thermal radiation. Applications.


Bibliography 

1. Thermodynamics
, E. Fermi (Dover, New York, 1936).

2. Thermodynamique, D. Bazarov (Mir, Moscu, 1983).

3. Heat and Thermodynamics, M.W. Zemansky (McGraw-Hill Kogakusha, Tokyo, 1957).

4. Fundamentals of Statistical Mechanics and Thermal Physics, F. Reif (McGraw-Hill International, 1981).

5. Física Atómica, M. Born (Fundação Calouste Gulbenkian, Lisboa, 1971).

 

 

 

 

Mandatory literature

E. Fermi; Thermodynamics, 1936
D. Bazarov; Thermodynamique, 1983
M.W. Zemansky; Heat and Thermodynamics , 1957
F. Reif; Fundamentals of Statistical Mechanics and Thermal Physics, 1981
M. Born; Física Atómica, 1971

Teaching methods and learning activities

Lectures and problem classes.

keywords

Physical sciences > Physics > Statistical physics
Physical sciences > Physics > Thermodynamics

Evaluation Type

Evaluation with final exam

Assessment Components

designation Weight (%)
Exame 100,00
Total: 100,00

Amount of time allocated to each course unit

designation Time (hours)
Estudo autónomo 106,00
Frequência das aulas 56,00
Total: 162,00

Eligibility for exams

Maximum number of absences in TP classes:3

Calculation formula of final grade

 Final exam.

Classification improvement

FInal Exam. 

Observations

 Members of the evaluation board: Orfeu Bertolami, João Viana Lopes  and João Pedro Araújo.

 

 

Recommend this page Top
Copyright 1996-2025 © Faculdade de Ciências da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2025-06-14 at 09:25:12 | Acceptable Use Policy | Data Protection Policy | Complaint Portal