Go to:
Logótipo
You are in:: Start > M1038

Linear Algebra and Analytic Geometry

Code: M1038     Acronym: M1038

Keywords
Classification Keyword
OFICIAL Mathematics

Instance: 2024/2025 - 1S Ícone do Moodle

Active? Yes
Responsible unit: Department of Mathematics
Course/CS Responsible: Bachelor in Physics

Cycles of Study/Courses

Acronym No. of Students Study Plan Curricular Years Credits UCN Credits ECTS Contact hours Total Time
L:EF 79 study plan from 2021/22 1 - 6 48 162
L:F 51 Official Study Plan 1 - 6 48 162
3

Teaching Staff - Responsibilities

Teacher Responsibility
Paula Alexandra de Almeida Bastos Carvalho Lomp

Teaching - Hours

Theoretical classes: 1,85
Theoretical and practical : 1,85
Type Teacher Classes Hour
Theoretical classes Totals 1 1,846
Paula Alexandra de Almeida Bastos Carvalho Lomp 1,846
Theoretical and practical Totals 3 5,538
Ana Maria Abreu Mendes de Oliveira 3,692
Paula Alexandra de Almeida Bastos Carvalho Lomp 1,846

Teaching language

Portuguese

Objectives

Upon completing this course the student should know and understand: how to solve and discuss linear systems of equations using the Gauss method with matrix notation; determinant properties for the computation of the determinant of a square matrix and knowing the cases where area and volume interpretations are given; the basic concepts and main results on vector spaces and on linear maps between finite-dimensional linear vector spaces.




Learning outcomes and competences

Upon completing this course, the student should be able tomake the main matrix operationssolve systems of linear equations using matricesusing matrices to discuss systems of linear equationscalculate determinants; apply the properties of determinantsrecognize  vectorsubspacesdetermine bases for real vector spaces; calculate the dimension of vector spacesrecognize linear functions, and their main propertiesdetermine or justify why there are no linear functions satisfying certain conditionswork with matrices associated with linear functionsdetermine eigenvectors and eigenvalues of matricesdiagonalize a matrix (if possible); using some properties of matrix diagonalization. Identify conic sections.

Working method

Presencial

Program


  1. Systems of linear equations:                                           

  2. Matrices     

  3. Determinants:                                   

  4. Vector spaces: 

  5. Linear maps

  6. Eigenvalues and eigenvectors

  7. Conics

  8. Dual space.

Mandatory literature

Ana Paula Santana; Introdução à álgebra linear. ISBN: 978-989-616-372-3
Isabel Cabral; Álgebra linear. ISBN: 978-972-592-239-2
Howard Anton, Chris Rorres; Elementary Linear Algebra - Applications Version, 9 edition. ISBN: ISBN 13: 978-0471669593

Complementary Bibliography

Edwards jr. C. H.; Elementary linear algebra. ISBN: 0-13-258245-7
Mansfield Larry E.; Linear algebra with geometric applications. ISBN: 0-8247-6321-1
Howard Anton, Chris Rorres; STUDENT SOLUTIONS MANUAL TO ACCOMPANY Elementary Linear Algebra with Applications 9 edition, Wiley, 2005. ISBN: ISBN-13 978- 0-471-43329-3

Teaching methods and learning activities

Lectures and classes: The contents of the syllabus are presented in the lectures, where examples are given to illustrate the concepts. There are also practical lessons, where exercises and related problems are solved. All resources are available for students at the unit’s web page (Moodle).

Evaluation Type

Distributed evaluation without final exam

Assessment Components

designation Weight (%)
Teste 100,00
Total: 100,00

Amount of time allocated to each course unit

designation Time (hours)
Estudo autónomo 114,00
Frequência das aulas 48,00
Total: 162,00

Eligibility for exams

No requirements.

Calculation formula of final grade


Assessment in "época normal" will be based on two  tests. The finall score is the media of both tests.


Make-up exam:

Students who still need to pass: exam with two parts, each part corresponding to one of the tests:



  • The student may choose to take any parts of the exam or use classifications of corresponding parts obtained in tests.

  • If they choose to do a part of the exam, it will be the classification obtained there for the final grade.

  • the final grade is computed as above. 


Students trying to improve their grade will have to write the whole exam and they will not be allowed to use testes.

Examinations or Special Assignments

Written or oral exam.

Special assessment (TE, DA, ...)

Written or oral exam.

Classification improvement

Exam. These students will not be allowed to take part of the continuous assessment of the course.

Observations

Artigo 13º do Regulamento Geral para Avaliação dos Discentes de Primeiros Ciclos, de Ciclos de Estudos Integrados de Mestrado e de Segundos Ciclos da U.Porto, aprovado em 19 de Maio de 2010 (cf. http://www.fc.up.pt/fcup/documentos/documentos.php?ap=3&ano=2011): "A fraude cometida na realização de uma prova, em qualquer das suas modalidades, implica a anulação da mesma e a comunicação ao órgão estatutariamente competente para eventual processo disciplinar."

Any student may be required to take an oral examination should there be any doubts concerning his/her performance on certain assessment pieces.
Recommend this page Top
Copyright 1996-2025 © Faculdade de Ciências da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2025-06-14 at 09:42:28 | Acceptable Use Policy | Data Protection Policy | Complaint Portal