Pattern Recognition and Clustering
Keywords |
Classification |
Keyword |
OFICIAL |
Mathematics |
Instance: 2010/2011 - 1S
Cycles of Study/Courses
Acronym |
No. of Students |
Study Plan |
Curricular Years |
Credits UCN |
Credits ECTS |
Contact hours |
Total Time |
L:AST |
0 |
Plano de Estudos a partir de 2008 |
3 |
- |
7,5 |
- |
202,5 |
L:CC |
0 |
Plano de estudos de 2008 até 2013/14 |
3 |
- |
7,5 |
- |
202,5 |
L:F |
0 |
Plano de estudos a partir de 2008 |
3 |
- |
7,5 |
- |
202,5 |
L:M |
0 |
Plano de estudos a partir de 2009 |
3 |
- |
7,5 |
- |
202,5 |
M:EG |
0 |
PE do Mestrado em Engenharia Geográfica |
1 |
- |
7,5 |
- |
202,5 |
M:ENM |
0 |
PE do Mestrado em Engenharia Matemática |
1 |
- |
7,5 |
- |
202,5 |
2 |
M:M |
1 |
PE do Mestrado em Matemática |
1 |
- |
7,5 |
- |
202,5 |
2 |
M:MAO |
1 |
PE Mestrado em MAOPI |
1 |
- |
7,5 |
- |
202,5 |
M:SIG |
0 |
PE do Mestrado em Sistemas de Informação Geográfic |
1 |
- |
7,5 |
- |
202,5 |
Teaching language
Portuguese
Objectives
Introduce the basic concepts of statistical pattern recognition and cluster analysis. It is also intended that the student is able to apply the concepts learned in real and simulated problems.
Program
Introduction and formulation of a pattern recognition recognition problem; some application examples. Random vectors and their properties: probability distributions, parameter estimation, linear transformations, principal components. Statistical decision theory. Parametric methods of discriminant analysis: Gaussian models. Nonparametric methods of discriminant analysis: Kernel methods and K-NN. Neural Networks, Decision and Regression Trees, Support Vector Machines. Unsupervised classification: hierarchical and nonhierarchical clustering.
Mandatory literature
000040415. ISBN: 0-471-05669-3
000040365. ISBN: 0-387-95284-5
000039952. ISBN: 0-521-46086-7
Teaching methods and learning activities
The lessons are accompanied by materials provided by the teacher, including exercise sheets for each of the sections programmatic, and also the use of statistical software.
Software
Software R
Evaluation Type
Distributed evaluation with final exam
Assessment Components
Description |
Type |
Time (hours) |
Weight (%) |
End date |
Attendance (estimated) |
Participação presencial |
70,00 |
|
|
|
Total: |
- |
0,00 |
|
Calculation formula of final grade
Final exam and projects. To be approved, the student must have a positive score both on the final exam and projects. The exam has a weight of 50% and the computational projects also 50%.