Number Theory and Applications
Keywords |
Classification |
Keyword |
OFICIAL |
Mathematics |
Instance: 2018/2019 - 1S 
Cycles of Study/Courses
Teaching language
Suitable for English-speaking students
Objectives
To introduce the basic concepts and results of Number Theory, together with some of its computational aspects. To give some of its cryptographical applications.
Learning outcomes and competences
To know the basic concepts and results of Number Theory, as well as some of its computational aspects and some of its cryptographical applications.
Working method
Presencial
Pre-requirements (prior knowledge) and co-requirements (common knowledge)
M141 Álgebra Linear I
M142 Álgebra Linear II
CC101 Introdução à Programação
Program
1. Introduction: Numbers (Peano axioms, induction, well-ordering)
2. Unique factorization in Z
3. Unique factorization in k[x]
4. Gauss integers and applications to unique factorization
5. Arithmetic functions
6. Congruences
7. Primitive roots and the group of units U(Z/nZ)
8. Artin conjecture and nth power residues
9. Quadratic residuies
10. The Law of quadratic reciprocity
11. Legendre symbol and proof of the law of quadratic reciprocity
12. Algebraic numbers and algebraic integers
13. Quadratic Gauss sum
14. Introduction to algebraic number theory
15. Unique factorization in field of algebraic numbers
16. Cryptography: classical ciphers
19. Public Key Cryptography: Deffie-Hellman RSA
20. Fast algorithm to calculate powers mod n. Cryptographic system ElGamal
21. Finite fields
22. Proof of the Theorem that the multiplicative group of a finite field is cyclic.
24. Elliptic curves
Mandatory literature
Ireland Kenneth;
A classical introduction to modern number theory. ISBN: 0-387-90625-8
Complementary Bibliography
Vinogradov I. M.;
Elements of number theory. ISBN: 0-486-60259-1
Shoup Victor;
A computational introduction to number theory and algebra. ISBN: 0-521-85154-8
Menezes Alfred J.;
Handbook of applied cryptography. ISBN: 0-8493-8523-7
Endler O.;
Teoria dos Números Algébricos
Teaching methods and learning activities
Lectures on the concepts and results of the subject matter, with many examples, and exercise solving classes.
Evaluation Type
Distributed evaluation without final exam
Assessment Components
designation |
Weight (%) |
Teste |
100,00 |
Total: |
100,00 |
Amount of time allocated to each course unit
designation |
Time (hours) |
Estudo autónomo |
106,00 |
Frequência das aulas |
56,00 |
Total: |
162,00 |
Eligibility for exams
There are no rules concerning the attendance frequency.
Calculation formula of final grade
1. During the regular time ("época normal") the final grade is obtained by the sum of the grades of two quizzes ("testes"):
Quiz 1: in the first quiz, which will take place during class time and which is still to be scheduled, students can obtain up to 10 points. A student who does not obtain 2 points will automatically obtain a "failed" in the first exam period.
Teste 2: in the second quiz, which will take place in January, students can obtain up to 10 points. A student who does not obtain 2 points will automatically obtain a "failed" in the first exam period.
The final grade is the sum of the scores obtained in both quizzes or "failed" in case one of the scores is below 2 points.
2. The make-up exam consists of only one exam which contains two parts corresponding to Quiz 1 + 2. Students have to have at least 2 points in each of the parts.
Examinations or Special Assignments
2 quizzes + make up exam