Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > An efficient method for the numerical integration of measured variable dependent ordinary differential equations

An efficient method for the numerical integration of measured variable dependent ordinary differential equations

Título
An efficient method for the numerical integration of measured variable dependent ordinary differential equations
Tipo
Artigo em Revista Científica Internacional
Ano
2015-02-01
Autores
C. Rodrigues de Azevedo
(Autor)
Outra
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Sem AUTHENTICUS Sem ORCID
J. Peres
(Autor)
FEUP
M. von Stosch
(Autor)
Outra
Revista
Vol. 38
Páginas: 24-33
ISSN: 0952-1976
Editora: Elsevier
Indexação
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citações
INSPEC
Classificação Científica
FOS: Ciências exactas e naturais > Ciências da computação e da informação
Outras Informações
ID Authenticus: P-00A-6VX
Abstract (EN): The Ordinary Differential Equations (ODEs) of dynamic models that are used in process monitoring, control or optimization, are not only functions of time and states, but also of measured variables. So far two possibilities for the numerical integration of such ODEs were given: (i) a fixed step size integration schema could be applied, matching the step size to the time instances of the measurements; or (ii) using an adaptive step size method while interpolating the measurements. While fixed step size methods are computationally expensive, the repetitive interpolation of measurements for the application of adaptive step size methods is prone to errors and time prohibitive, especially for great numbers of measured variables. In this paper, an adaptive step size numerical integration method is proposed and evaluated for dynamic neural network/hybrid semi-parametric models. The method evaluates the ODEs only at time instances at which online measurements are available and adapts the step size according to those time instances. The numerical solution of the ODEs is provided at time instances which are specified by the user, i.e. at time instances of offline measured states. The rationale behind the proposed method is carefully analyzed, and it is demonstrated that its application along with a hybrid model/dynamic neural network model can result into a significant reduction of number of function evaluations, in the studied cases about 50%, while adhering user specified error tolerances for the numerical integration. In addition, the mutual interference between step-size adaption, parameter identification, coping of the neural network and model performance is studied, a fact that other studies have paid little to no attention.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 10
Documentos
Não foi encontrado nenhum documento associado à publicação com acesso permitido.
Publicações Relacionadas

Da mesma revista

Using Recurrent Neural Networks to improve initial conditions for a solar wind forecasting model (2024)
Artigo em Revista Científica Internacional
Barros, FS; Graça, PA; Lima, JJG; Pinto, RF; André Restivo; Villa, M
NORMO: A new method for estimating the number of components in CP tensor decomposition (2020)
Artigo em Revista Científica Internacional
Fernandes, S; Fanaee T, H; João Gama
Exploring Design smells for smell-based defect prediction (2022)
Artigo em Revista Científica Internacional
Sotto Mayor, B; Elmishali, A; Kalech, M; Rui Abreu
Enhancing data stream predictions with reliability estimators and explanation (2014)
Artigo em Revista Científica Internacional
Zoran Bosnic; Jaka Demsar; Grega Kespret; Pedro Pereira Rodrigues; Joao Gama; Igor Kononenko

Ver todas (10)

Recomendar Página Voltar ao Topo
Copyright 1996-2024 © Faculdade de Belas Artes da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z  I Livro de Visitas
Página gerada em: 2024-11-09 às 07:45:38 | Política de Utilização Aceitável | Política de Proteção de Dados Pessoais | Denúncias