Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Logótipo
Você está em: Início > Publicações > Visualização > An Interpretable Approach for Lung Cancer Prediction and Subtype Classification using Gene Expression

An Interpretable Approach for Lung Cancer Prediction and Subtype Classification using Gene Expression

Título
An Interpretable Approach for Lung Cancer Prediction and Subtype Classification using Gene Expression
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2021
Autores
Ramos, B
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Pereira, T
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Moranguinho, J
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Morgado, J
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Costa, JL
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Outras Informações
ID Authenticus: P-00V-ZMR
Abstract (EN): Lung cancer is the deadliest form of cancer, accounting for 20% of total cancer deaths. It represents a group of histologically and molecularly heterogeneous diseases even within the same histological subtype. Moreover, accurate histological subtype diagnosis influences the specific subtype's target genes, which will help define the treatment plan to target those genes in therapy. Deep learning (DL) models seem to set the benchmarks for the tasks of cancer prediction and subtype classification when using gene expression data; however, these methods do not provide interpretability, which is great concern from the perspective of cancer biology since the identification of the cancer driver genes in an individual provides essential information for treatment and prognosis. In this work, we identify some limitations of previous work that showed efforts to build algorithms to extract feature weights from DL models, and we propose using tree-based learning algorithms that address these limitations. Preliminary results show that our methods outperform those of related research while providing model interpretability.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 4
Documentos
Não foi encontrado nenhum documento associado à publicação.
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Psicologia e de Ciências da Educação da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-11-25 às 11:55:40 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico