Abstract (EN):
Water loss is one of the factors that most affect a concessionaire's financial sustainability. Early detection of any anomaly in water consumption is very valuable. This article aims to carry out a preliminary study to detect change points in consumption associated with water meter malfunction. The dataset is composed of water consumption measurements of two different companies (a hotel and a hospital) located in the north of Portugal, obtained during a complete year. Different methods were implemented in order to study its effectiveness in the detection of change points in the time series related to a sharp decrease in water consumption. Results suggest that the Seasonal Decomposition of Time Series by Loess method (STL) and the combination of several breakpoint detection methods is a suitable approach to be implemented in a software system, in order to help the company in anomaly detection and in the decision-making process of substituting the water meters.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
12