Abstract (EN):
Recent research efforts to mitigate the burden of biofouling in marine environments have focused on the development of environmentally friendly coatings that can provide long-lasting protective effects. In this study, the antifouling performance of novel polyurethane (PU)-based coatings containing cyclam-based Fe(III) complexes against Cobetia marina biofilm formation was investigated. Biofilm assays were performed over 42 days under controlled hydrodynamic conditions that mimicked marine environments. Colony-forming units (CFU) determination and flow cytometric (FC) analysis showed that PU-coated surfaces incorporating 1 wt.% of complexes with formula [{R2(4-CF3PhCH2)2Cyclam}FeCl2]Cl (R = H, HOCH2CH2CH2) significantly reduced both culturable and total cells of C. marina biofilms up to 50% (R = H) and 38% (R = HOCH2CH2CH2) compared to PU-coated surface without complexes (control surface). The biofilm architecture was further analyzed using Optical Coherence Tomography (OCT), which showed that biofilms formed on the PU-coated surfaces containing cyclam-based Fe(III) complexes exhibited a significantly reduced thickness (58-61% reduction), biovolume (50-60% reduction), porosity (95-97% reduction), and contour coefficient (77% reduction) compared to the control surface, demonstrating a more uniform and compact structure. These findings were also supported by Confocal Laser Scanning Microscopy (CLSM) images, which showed a decrease in biofilm surface coverage on PU-coated surfaces containing cyclam-based Fe(III) complexes. Moreover, FC analysis revealed that exposure to PU-coated surfaces increases bacterial metabolic activity and induces ROS production. These results underscore the potential of these complexes to incorporate PU-coated surfaces as bioactive additives in coatings to effectively deter long-term bacterial colonization in marine environments, thereby addressing biofouling-related challenges.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
15