Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Logótipo
Você está em: Start > Publications > View > Q2DTor: A program to treat torsional anharmonicity through coupled pair torsions in flexible molecules
Publication

Q2DTor: A program to treat torsional anharmonicity through coupled pair torsions in flexible molecules

Title
Q2DTor: A program to treat torsional anharmonicity through coupled pair torsions in flexible molecules
Type
Article in International Scientific Journal
Year
2018
Authors
Ferro Costas, D
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Natalia N D S Cordeiro
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Truhlar, DG
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Fernandez Ramos, A
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Vol. 232
Pages: 190-205
ISSN: 0010-4655
Publisher: Elsevier
Other information
Authenticus ID: P-00P-HAF
Abstract (EN): The Q2DTor program (Quantum 2-Dimensional Torsions) is designed to calculate accurate rotational-vibrational partition functions (also called rovibrational partition functions) and thermodynamic functions for molecular systems having two [1] or more torsions. Systems with more than two torsions can also be studied by treating the torsions by pairs. The program searches for all the torsional conformers and evaluates the rovibrational partition function using the multi-structural harmonic oscillator (MS-HO) approximation and the extended two-dimensional torsion (E2DT) approximation. The latter incorporates full coupling of the two torsions by means of the two-dimensional non-separable (2D-NS) approximation [2], and it also includes their influence on the remaining degrees of freedom. The program also calculates the ideal gas-phase standard-state thermodynamic functions at the requested temperatures. Twenty molecules have been used to test Q2DTor. Program summary Program Title: Q2DTor Program Files doi: http:/dx.doi.org/10.17632/wbechgc2kp.1 Licensing provisions: GNU GPL v3 Programming language: Python 2.7 Nature of problem: Calculation of accurate partition functions and thermodynamic functions in molecular systems involving two torsional modes. Torsional anharmonicity is treated quantically and includes full coupling in the kinetic and potential energies between the torsions and between the torsions and the rest of the degrees of freedom. Solution method: The program uses the variational method to solve the Schrodinger equation of a two-dimensional torsional potential using Fourier series. All of the remaining degrees of freedom (non-torsional) are incorporated through a projected (the torsional modes are removed) rigid-rotator harmonic-oscillator partition function which is calculated at every torsional stationary point and that is allowed to vary with the torsional motion. The integration of the rovibrational partition function over the torsional space leads to a mixed quantum-classical vibrational partition function, which is transformed into a full quantum partition function by including the quantum contribution due to the torsions. For the evaluation of the integral, the rovibrational partition function at nonstationary points is carried out through a Delaunay triangulation procedure using the calculated rovibrational partition functions at the stationary points as nodes. Additional comments including Restrictions and Unusual features: The program is limited to two coupled torsional modes. References: [1] L. Simon-Carballido et al., J. Chem. Theory Comput. 13 (2017) 3478. [2] A. Fernandez-Ramos, J. Chem. Phys. 138 (2013) 134112.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 16
Documents
We could not find any documents associated to the publication.
Recommend this page Top
Copyright 1996-2024 © Faculdade de Psicologia e de Ciências da Educação da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2024-08-01 at 01:25:57 | Acceptable Use Policy | Data Protection Policy | Complaint Portal