Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Logótipo
Você está em: Start > Publications > View > The Catalytic Mechanism of the Marine-Derived Macrocyclase PatGmac
Publication

The Catalytic Mechanism of the Marine-Derived Macrocyclase PatGmac

Title
The Catalytic Mechanism of the Marine-Derived Macrocyclase PatGmac
Type
Article in International Scientific Journal
Year
2016
Authors
Natercia F Bras
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
Ferreira, P
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Jaspars, M
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Houssen, W
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Naismith, JH
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Ramos, MJ
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Vol. 22
ISSN: 0947-6539
Publisher: Wiley-Blackwell
Other information
Authenticus ID: P-00M-3BH
Abstract (EN): Cyclic peptides are a class of compounds with high therapeutic potential, possessing bioactivities including antitumor and antiviral (including anti-HIV). Despite their desirability, efficient design and production of these compounds has not been achieved to date. The catalytic mechanism of patellamide macrocyclization by the PatG macrocyclase domain has been computationally investigated by using quantum mechanics/molecular mechanics methodology, specifically ONIOM(M06/6-311++G(2d,2p):ff94//B3LYP/6-31G(d):ff94). The mechanism proposed herein begins with a proton transfer from Ser783 to His 618 and from the latter to Asp548. Nucleophilic attack of Ser783 on the substrate leads to the formation of an acyl-enzyme covalent complex. The leaving group Ala-Tyr-Asp-Gly (AYDG) of the substrate is protonated by the substrate's N terminus, leading to the breakage of the P1-P1' bond. Finally, the substrate's N terminus attacks the P1 residue, decomposing the acyl-enzyme complex forming the macrocycle. The formation and decomposition of the acyl-enzyme complex have the highest activation free energies (21.1 kcal mol(-1) and 19.8 kcal mol(-1) respectively), typical of serine proteases. Understanding the mechanism behind the macrocyclization of patellamides will be important to the application of the enzymes in the pharmaceutical and biotechnological industries.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 9
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same authors

Inside Cover: The Catalytic Mechanism of the Marine-Derived Macrocyclase PatGmac (Chem. Eur. J. 37/2016) (2016)
Another Publication in an International Scientific Journal
Natercia F Bras; Ferreira, P; Calixto, AR; Jaspars, M; Houssen, W; Naismith, JH; Pedro A Fernandes; Ramos, MJ

Of the same journal

Inside Cover: The Catalytic Mechanism of the Marine-Derived Macrocyclase PatGmac (Chem. Eur. J. 37/2016) (2016)
Another Publication in an International Scientific Journal
Natercia F Bras; Ferreira, P; Calixto, AR; Jaspars, M; Houssen, W; Naismith, JH; Pedro A Fernandes; Ramos, MJ
Developments Towards Regioselective Synthesis of 1,2-Disubstituted Benzimidazoles (2011)
Another Publication in an International Scientific Journal
Luisa C R Carvalho; Eduarda Fernandes; Manuel M B Marques
Water Stable Zr-Benzenedicarboxylate Metal-Organic Frameworks as Photocatalysts for Hydrogen Generation (2010)
Article in International Scientific Journal
Claudia Gomes Silva; Ignacio Luz; Francesc X L I Llabres i Xamena; Avelino Corma; Hermenegildo Garcia
Understanding ribonucleotide reductase inactivation by gemcitabine (2007)
Article in International Scientific Journal
Nuno M F S A Cerqueira; Pedro A Fernandes; Maria L Ramos

See all (33)

Recommend this page Top
Copyright 1996-2024 © Faculdade de Psicologia e de Ciências da Educação da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2024-10-10 at 02:24:48 | Acceptable Use Policy | Data Protection Policy | Complaint Portal