Go to:
Logótipo
Você está em: Start > Publications > View > Monocular Visual Odometry Benchmarking and Turn Performance Optimization
Map of Premises
Principal
Publication

Monocular Visual Odometry Benchmarking and Turn Performance Optimization

Title
Monocular Visual Odometry Benchmarking and Turn Performance Optimization
Type
Article in International Conference Proceedings Book
Year
2019
Authors
André Aguiar
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Armando Jorge Sousa
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Miguel Oliveira
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Conference proceedings International
Pages: 237-242
19th IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC)
Gondomar, PORTUGAL, APR 24-26, 2019
Indexing
Other information
Authenticus ID: P-00Q-HZ6
Abstract (EN): Developing ground robots for crop monitoring and harvesting in steep slope vineyards is a complex challenge due to two main reasons: harsh condition of the terrain and unstable localization accuracy obtained with Global Navigation Satellite System. In this context, a reliable localization system requires an accurate and redundant information to Global Navigation Satellite System and wheel odometry based system. To pursue this goal we benchmark 3 well known Visual Odometry methods with 2 datasets. Two of these are feature-based Visual Odometry algorithms: Libviso2 and SVO 2.0. The third is an appearance-based Visual Odometry algorithm called DSO. In monocular Visual Odometry, two main problems appear: pure rotations and scale estimation. In this paper, we focus on the first issue. To do so, we propose a Kalman Filter to fuse a single gyroscope with the output pose of monocular Visual Odometry, while estimating gyroscope's bias continuously. In this approach we propose a non-linear noise variation that ensures that bias estimation is not affected by Visual Odometry resultant rotations. We compare and discuss the three unchanged methods and the three methods with the proposed additional Kalman Filter. For tests, two public datasets are used: the Kitti dataset and another built in-house. Results show that our additional Kalman Filter highly improves Visual Odometry performance in rotation movements.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 6
Documents
We could not find any documents associated to the publication.
Recommend this page Top
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-08-28 at 20:49:05 | Privacy Policy | Personal Data Protection Policy | Whistleblowing | Electronic Yellow Book