Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Analysis of gated myocardial perfusion SPECT images based on computational image registration

Publicações

Analysis of gated myocardial perfusion SPECT images based on computational image registration

Título
Analysis of gated myocardial perfusion SPECT images based on computational image registration
Tipo
Artigo em Livro de Atas de Conferência Nacional
Ano
2015
Autores
Raquel S. Alves
(Autor)
FEUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Sem AUTHENTICUS Sem ORCID
Diogo Borges Faria
(Autor)
FEUP
Durval Campos Costa
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
João Manuel R. S. Tavares
(Autor)
FEUP
Ata de Conferência Nacional
Páginas: 1-2
2015 IEEE 4th Portuguese Meeting on Bioengineering (ENBENG) Porto, Portugal 26-28 February 2015
Porto, Portugal, 26-28 February 2015
Indexação
Publicação em ISI Web of Science ISI Web of Science
INSPEC
Classificação Científica
FOS: Ciências da engenharia e tecnologias
CORDIS: Ciências Tecnológicas
Outras Informações
Abstract (EN): Myocardial perfusion is commonly studied based on the evaluation of the left ventricular function using stress-rest gated myocardial perfusion single photon emission computed tomography (GSPECT), which provides a suitable identification of the myocardial region, facilitating the localization and characterization of perfusion abnormalities. The prevalence and clinical predictors of myocardial ischemia and infarct can be assessed from GSPECT images. Here, techniques of image analysis, namely image segmentation and registration, are integrated to automatically extract a set of features from myocardial perfusion SPECT images that are automatically classified as related to myocardial perfusion disorders or not. The solution implemented can be divided into two main parts: 1) building of a template image, segmentation of the template image and computation of its dimensions; 2) registration of the image under study with the template image previously built, extraction of the image features, statistical analysis and classification. It should be noted that the first step just needs to be performed once for a particular population. Hence, algorithms of image segmentation, registration and classification were used, specifically of k-means clustering, rigid and deformable registration and classification. The computational solution developed was tested using 180 3D images from 48 patients with healthy cardiac condition and 72 3D images from 12 patients with cardiac diseases, which were reconstructed using the filtered back projection algorithm and a low pass Butterworth filter or iterative algorithms. The images were classified into two classes: ¿abnormality present¿ and ¿abnormality not present¿. The classification was assessed using five parameters: sensitivity, specificity, precision, accuracy and mean error rate. The results obtained shown that the solution is effective, both for female and male cardiac SPECT images that can have very different structural dimensions. Particularly, the solution demonstrated reasonable robustness against the two major difficulties in SPECT image analysis: image noise and low resolution. Furthermore, the classifier used demonstrated good specificity and accuracy, Table 1.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Contacto: www.fe.up.pt/~tavares
Nº de páginas: 2
Tipo de Licença: Clique para ver a licença CC BY-NC
Documentos
Nome do Ficheiro Descrição Tamanho
ENBENG2015-RA Abstract 135.45 KB
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-03 às 21:17:04 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias