Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > ydata-profiling: Accelerating data-centric AI with high-quality data

Publicações

ydata-profiling: Accelerating data-centric AI with high-quality data

Título
ydata-profiling: Accelerating data-centric AI with high-quality data
Tipo
Artigo em Revista Científica Internacional
Ano
2023
Autores
Clemente, F
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Ribeiro, GM
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Quemy, A
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Santos, MS
(Autor)
Outra
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Pereira, RC
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Barros, A
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Revista
Título: NeurocomputingImportada do Authenticus Pesquisar Publicações da Revista
Vol. 554
ISSN: 0925-2312
Editora: Elsevier
Outras Informações
ID Authenticus: P-010-7KQ
Abstract (EN): ydata-profiling is an open-source Python package for advanced exploratory data analysis that enables users to generate data profiling reports in a simple, fast, and efficient manner, fostering a standardized and visual understanding of the data. Beyond traditional descriptive properties and statistics, ydata-profiling follows a Data-Centric AI approach to exploratory analysis, as it focuses on the automatic detection and highlighting of complex data characteristics often associated with potential data quality issues, such as high ratios of missing or imbalanced data, infinite, unique, or constant values, skewness, high correlation, high cardinality, non-stationarity, seasonality, duplicate records, and other inconsistencies. The source code, documentation, and examples are available in the GitHub repository: https://github.com/ydataai/ydata-profiling.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 10
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

The vitality of pattern recognition and image analysis (2015)
Outra Publicação em Revista Científica Internacional
Luisa Mico; Joao M Sanches; Jaime S Cardoso
The vitality of pattern recognition and image analysis (2015)
Artigo em Revista Científica Internacional
Micó, L; Sanches, JM; Jaime S Cardoso
Pre-processing approaches for imbalanced distributions in regression (2019)
Artigo em Revista Científica Internacional
Branco, P; Torgo, L; Rita Ribeiro
Predicting satisfaction: perceived decision quality by decision-makers in Web-based group decision support systems (2019)
Artigo em Revista Científica Internacional
João Carneiro; Pedro Saraiva; Luís Conceição; Ricardo Santos; Goreti Marreiros; Paulo Novais
Online tree-based ensembles and option trees for regression on evolving data streams (2015)
Artigo em Revista Científica Internacional
Ikonomovska, E; João Gama; Dzeroski, S

Ver todas (22)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-07 às 02:32:09 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias