Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Non-Negative Matrix Factorization (NMF) in Fire Susceptibility

Publicações

Non-Negative Matrix Factorization (NMF) in Fire Susceptibility

Título
Non-Negative Matrix Factorization (NMF) in Fire Susceptibility
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2024
Autores
Rahimi, I
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Lia Duarte
(Autor)
FCUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Ana Teodoro
(Autor)
FCUP
Ata de Conferência Internacional
Página Final: 50
Earth Resources and Environmental Remote Sensing/GIS Applications XV 2024
Edinburgh, 16 September 2024 through 19 September 2024
Indexação
Publicação em Scopus Scopus - 0 Citações
Outras Informações
ID Authenticus: P-017-MCM
Abstract (EN): In recent years, the Kurdo-Zagrosian mountains in western Iran and northern Iraq have faced numerous wildfire fires. Mapping forest fire susceptibility is crucial for several reasons, including its role in prevention and mitigation, resource allocation, ecological conservation, early warning systems, policy development, insurance and risk management, and wildfire risk mapping. Machine Learning (ML) has found numerous applications in remote sensing, including fire detection, severity assessment, fuel moisture content estimation, fire spread prediction, fire susceptibility mapping, smoke plume detection, air quality monitoring, post-fire recovery monitoring, and decision support systems for fire management. This study employs a new approach to leveraging Non-negative Matrix Factorization (NMF) for detecting fire-susceptible areas in the Kurdo-Zagrosian forests of Marivan and Sarvabad in Kurdistan Province, western Iran. The NMF is a ML method used for dimensionality reduction and feature extraction. NMF differs from traditional matrix factorization methods by enforcing non-negativity constraints on the factor matrices, making the resulting factors interpretable and often more suitable for real-world data analysis. Sentinel-2 satellite imagery, elevation, distance to the road network, and Zagros Grass Index (ZGI) have been used as the primary inputs of the model, combined with in situ data for verifying and interpreting the resulting maps. The results showed that, besides providing useful information in extracting fire susceptible areas, NMF handles wide study areas efficiently, especially for tasks like feature extraction from large-scale datasets such as satellite images or multispectral data. The results especially revealed that ZGI has specifically demonstrated improved accuracy and reliability. The resulting map also showed a very close overlap between the fired area provided by Sentinel imagery from 2021 to 2023 and the areas labeled as highly susceptible regions in 2020, especially when ZGI has been regarded between the input variables. © 2024 SPIE.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

Zagros Grass Index-A New Vegetation Index to Enhance Fire Fuel Mapping: A Case Study in the Zagros Mountains (2024)
Artigo em Revista Científica Internacional
Rahimi, I; Lia Duarte; Ana Teodoro
A New Indicator for Enhancing Fire Fuel Mapping in Marivan Forests, West of Iran (2023)
Artigo em Livro de Atas de Conferência Internacional
Rahimi, I; Lia Duarte; Ana Teodoro
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-07-30 às 06:54:23 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias