Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Topic Extraction: BERTopic's Insight into the 117th Congress's Twitterverse

Publicações

Topic Extraction: BERTopic's Insight into the 117th Congress's Twitterverse

Título
Topic Extraction: BERTopic's Insight into the 117th Congress's Twitterverse
Tipo
Artigo em Revista Científica Internacional
Ano
2024
Autores
Mendonça, M
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Figueira, A
(Autor)
FCUP
Revista
Título: InformaticsImportada do Authenticus Pesquisar Publicações da Revista
Vol. 11
Página Final: 8
ISSN: 2227-9709
Editora: MDPI
Outras Informações
ID Authenticus: P-00Z-ZEH
Abstract (EN): As social media (SM) becomes increasingly prevalent, its impact on society is expected to grow accordingly. While SM has brought positive transformations, it has also amplified pre-existing issues such as misinformation, echo chambers, manipulation, and propaganda. A thorough comprehension of this impact, aided by state-of-the-art analytical tools and by an awareness of societal biases and complexities, enables us to anticipate and mitigate the potential negative effects. One such tool is BERTopic, a novel deep-learning algorithm developed for Topic Mining, which has been shown to offer significant advantages over traditional methods like Latent Dirichlet Allocation (LDA), particularly in terms of its high modularity, which allows for extensive personalization at each stage of the topic modeling process. In this study, we hypothesize that BERTopic, when optimized for Twitter data, can provide a more coherent and stable topic modeling. We began by conducting a review of the literature on topic-mining approaches for short-text data. Using this knowledge, we explored the potential for optimizing BERTopic and analyzed its effectiveness. Our focus was on Twitter data spanning the two years of the 117th US Congress. We evaluated BERTopic's performance using coherence, perplexity, diversity, and stability scores, finding significant improvements over traditional methods and the default parameters for this tool. We discovered that improvements are possible in BERTopic's coherence and stability. We also identified the major topics of this Congress, which include abortion, student debt, and Judge Ketanji Brown Jackson. Additionally, we describe a simple application we developed for a better visualization of Congress topics.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 34
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Do NFTs sound good? An exploratory study on audio NFTs and possible avenues (2022)
Artigo em Revista Científica Internacional
Fernandes, Clara E.; Morais, Ricardo
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-11-25 às 18:54:35 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico