Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > 0-DMF: ADecision-Support Framework for Zero Defects Manufacturing

Publicações

0-DMF: ADecision-Support Framework for Zero Defects Manufacturing

Título
0-DMF: ADecision-Support Framework for Zero Defects Manufacturing
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2024
Autores
Coutinho, B
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Pereira, E
(Autor)
FEUP
Ata de Conferência Internacional
Páginas: 253-260
21st International Conference on Informatics in Control, Automation and Robotics, ICINCO 2024
Porto, 18 November 2024 through 20 November 2024
Indexação
Publicação em Scopus Scopus - 0 Citações
Outras Informações
ID Authenticus: P-018-GMQ
Abstract (EN): Manufacturing companies are increasingly focused on minimising defects and optimising resource consump tion to meet customer demands and sustainability goals. Zero Defect Manufacturing (ZDM) is a widely adopted strategy to systematically reduce defects. However, research on proactive defect-reducing measures remains limited compared to traditional defect detection approaches. This work presents the 0-DMF decision support framework, which employs data-driven techniques for defect reduction through (1) defect prediction, (2) process parameter adjustments to prevent predicted defects, and (3) clarifying prediction factors, provid ing contextual information about the manufacturing process. For defect prediction, Machine Learning (ML) algorithms, including XGBoost, CatBoost, and Random Forest, were evaluated. For process parameter ad justments, optimisation algorithms such as Powell and Dual Annealing were implemented. To enhance trans parency, Explainable Artificial Intelligence (XAI) methods, including SHAP and LIME, were incorporated. Tailored for the melamine-surfaced panels process, the methods showed promising results. The defect predic tion model achieved a recall value of 0.97. The optimisation method reduced the average defect probability by 28 percentage points. The integration of XAI enhanced the framework¿s reliability. Combined into a unified tool, all tasks delivered fast results, meeting industrial time constraints. These outcomes signify advancements in predictive quality through data-driven approaches for defect prediction and prevention. © 2024 by SCITEPRESS¿ Science and Technology Publications, Lda.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 7
Documentos
Não foi encontrado nenhum documento associado à publicação.
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-08-29 às 01:56:17 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias