Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Transformer-Based Models for Probabilistic Time Series Forecasting with Explanatory Variables

Publicações

Transformer-Based Models for Probabilistic Time Series Forecasting with Explanatory Variables

Título
Transformer-Based Models for Probabilistic Time Series Forecasting with Explanatory Variables
Tipo
Artigo em Revista Científica Internacional
Ano
2025
Autores
Caetano, R
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Oliveira, José Manuel
(Autor)
FEP
Patrícia Ramos
(Autor)
Outra
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Revista
Título: MathematicsImportada do Authenticus Pesquisar Publicações da Revista
Vol. 13
Página Final: 814
Editora: MDPI
Indexação
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citações
Publicação em Scopus Scopus - 0 Citações
Outras Informações
ID Authenticus: P-018-4R9
Abstract (EN): Accurate demand forecasting is essential for retail operations as it directly impacts supply chain efficiency, inventory management, and financial performance. However, forecasting retail time series presents significant challenges due to their irregular patterns, hierarchical structures, and strong dependence on external factors such as promotions, pricing strategies, and socio-economic conditions. This study evaluates the effectiveness of Transformer-based architectures, specifically Vanilla Transformer, Informer, Autoformer, ETSformer, NSTransformer, and Reformer, for probabilistic time series forecasting in retail. A key focus is the integration of explanatory variables, such as calendar-related indicators, selling prices, and socio-economic factors, which play a crucial role in capturing demand fluctuations. This study assesses how incorporating these variables enhances forecast accuracy, addressing a research gap in the comprehensive evaluation of explanatory variables within multiple Transformer-based models. Empirical results, based on the M5 dataset, show that incorporating explanatory variables generally improves forecasting performance. Models leveraging these variables achieve up to 12.4% reduction in Normalized Root Mean Squared Error (NRMSE) and 2.9% improvement in Mean Absolute Scaled Error (MASE) compared to models that rely solely on past sales. Furthermore, probabilistic forecasting enhances decision making by quantifying uncertainty, providing more reliable demand predictions for risk management. These findings underscore the effectiveness of Transformer-based models in retail forecasting and emphasize the importance of integrating domain-specific explanatory variables to achieve more accurate, context-aware predictions in dynamic retail environments.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 29
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Survey on Synthetic Data Generation, Evaluation Methods and GANs (2022)
Outra Publicação em Revista Científica Internacional
Figueira, A; Vaz, B
Nonlinear Dynamics (2022)
Outra Publicação em Revista Científica Internacional
António Mendes Lopes; Machado, JAT
Data Science in Economics: Comprehensive Review of Advanced Machine Learning and Deep Learning Methods (2020)
Outra Publicação em Revista Científica Internacional
Nosratabadi, S; Mosavi, A; Duan, P; Ghamisi, P; Filip, F; Band, SS; Reuter, U; João Gama; Gandomi, AH
Welfare-Balanced International Trade Agreements (2023)
Artigo em Revista Científica Internacional
Martins, F; Alberto A. Pinto; Zubelli, JP
Validation of HiG-Flow Software for Simulating Two-Phase Flows with a 3D Geometric Volume of Fluid Algorithm (2023)
Artigo em Revista Científica Internacional
Silva, ATGD; Fernandes, C; Organista, J; Souza, L; Castelo, A

Ver todas (46)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-07-16 às 10:13:00 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias