Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Hierarchical Reinforcement Learning and Evolution Strategies for Cooperative Robotic Soccer

Publicações

Hierarchical Reinforcement Learning and Evolution Strategies for Cooperative Robotic Soccer

Título
Hierarchical Reinforcement Learning and Evolution Strategies for Cooperative Robotic Soccer
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2024
Autores
Santos, B
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Cardoso, A
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Ledo, G
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Armando Jorge Sousa
(Autor)
FEUP
Ata de Conferência Internacional
Páginas: 1-6
7th Iberian Robotics Conference
Madrid, SPAIN, NOV 06-08, 2024
Indexação
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citações
Publicação em Scopus Scopus - 0 Citações
Outras Informações
ID Authenticus: P-017-XRG
Abstract (EN): Artificial I ntelligence ( AI) a nd M achine Learning are frequently used to develop player skills in robotic soccer scenarios. Despite the potential of deep reinforcement learning, its computational demands pose challenges when learning complex behaviors. This work explores less demanding methods, namely Evolution Strategies (ES) and Hierarchical Reinforcement Learning (HRL), for enhancing coordination and cooperation between two agents from the FC Portugal 3D Simulation Soccer Team, in RoboCup. The goal is for two robots to learn a high-level skill that enables a robot to pass the ball to its teammate as quickly as possible. Results show that the trained models under-performed in a traditional robotic soccer two-agent task and scored perfectly in a much simpler one. Therefore, this work highlights that while these alternative methods can learn trivial cooperative behavior, more complex tasks are difficult t o learn.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 6
Documentos
Não foi encontrado nenhum documento associado à publicação.
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-08 às 15:52:43 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico