Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Using Deep Learning for 2D Primitive Perception with a Noisy Robotic LiDAR

Publicações

Using Deep Learning for 2D Primitive Perception with a Noisy Robotic LiDAR

Título
Using Deep Learning for 2D Primitive Perception with a Noisy Robotic LiDAR
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2024
Autores
Brito, A
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Sousa, P
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Couto, A
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Leao, G
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Armando Jorge Sousa
(Autor)
FEUP
Ata de Conferência Internacional
Páginas: 1-6
7th Iberian Robotics Conference
Madrid, SPAIN, NOV 06-08, 2024
Indexação
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citações
Publicação em Scopus Scopus - 0 Citações
Outras Informações
ID Authenticus: P-017-XRF
Abstract (EN): Effective navigation in mobile robotics relies on precise environmental mapping, including the detection of complex objects as geometric primitives. This work introduces a deep learning model that determines the pose, type, and dimensions of 2D primitives using a mobile robot equipped with a noisy LiDAR sensor. Simulated experiments conducted in Webots involved randomly placed primitives, with the robot capturing point clouds which were used to progressively build a map of the environment. Two mapping techniques were considered, a deterministic and probabilistic (Bayesian) mapping, and different levels of noise for the LiDAR were compared. The maps were used as input to a YOLOv5 network that detected the position and type of the primitives. A cropped image of each primitive was then fed to a Convolutional Neural Network (CNN) that determined the dimensions and orientation of a given primitive. Results show that the primitive classification achieved an accuracy of 95% in low noise, dropping to 85% under higher noise conditions, while the prediction of the shapes' dimensions had error rates from 5% to 12%, as the noise increased. The probabilistic mapping approach improved accuracy by 10-15% compared to deterministic methods, showcasing robustness to noise levels up to 0.1. Therefore, these findings highlight the effectiveness of probabilistic mapping in enhancing detection accuracy for mobile robot perception in noisy environments.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 6
Documentos
Não foi encontrado nenhum documento associado à publicação.
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-12 às 22:28:09 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico