Abstract (EN):
This paper describes our submission1 to the SemEval 2019 Hyperpartisan News Detection task. Our system aims for a linguistics-based document classification from a minimal set of interpretable features, while maintaining good performance. To this goal, we follow a feature-based approach and perform several experiments with different machine learning classifiers. On the main task, our model achieved an accuracy of 71.7%, which was improved after the task's end to 72.9%. We also participate in the meta-learning sub-task, for classifying documents with the binary classifications of all submitted systems as input, achieving an accuracy of 89.9%.
Idioma:
Inglês
Tipo (Avaliação Docente):
Científica
Nº de páginas:
4