Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Evaluating public transport performance with neural networks

Publicações

Evaluating public transport performance with neural networks

Título
Evaluating public transport performance with neural networks
Tipo
Artigo em Revista Científica Internacional
Ano
1997
Autores
Álvaro Costa
(Autor)
FEUP
Raphael Markellos
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Revista
Vol. 5 5
Páginas: 301-312
ISSN: 0968-090X
Editora: Elsevier
Indexação
Publicação em ISI Proceedings ISI Proceedings
Publicação em Scopus Scopus
Classificação Científica
FOS: Ciências da engenharia e tecnologias > Engenharia civil
CORDIS: Ciências Físicas > Ciência de computadores > Design de sistemas > Redes neuronais ; Ciências Sociais > Economia > Estudos de gestão > Gestão de transportes
Outras Informações
Abstract (EN): The paper is concerned with measuring performance of public transport services based on the concept of productive efficiency. A new nonparametric approach is proposed based on multi-layer perceptron neural networks (MLPs). Tha advantages and limitations of this approach are discussed and compared with those of mathematical programming and econometric techniques. The MLP is used, along with data envelopment analysis (DEA) and corrected least squares (COLS), to set out comparative efficiency measures for the London Underground, for the period 1970 to 1974. It is argued that the MLP approach is superior to traditionally applied techniques since it is both nonparametric and stochastic and offers greater flexibility. Finnaly, it is demonstrated that the proposed MLP efficiency analysis has important practical implications for decision making.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Contacto: afcosta@fe.up.pt
Notas: References: Costa, Á., Public transport efficiency and effectiveness: Metro de Madrid (1996) European Transport Analysis and Policies, , ed. K. Button, P., Nijkam and H. Priemus. Edward Elgar, Cheltenham, fourthcoming; Deboeck, G.J., Cader, M., Pre- and postprocessing of financial data (1994) Trading on the, pp. 27-44. , Wiley, New York; Dougherty, M., A review of neural networks applied to transport (1995) Transportation Research, 3 C, pp. 247-260; Efron, B., Tibshirani, R.J., (1193) An Introduction to the Bootstrap, , Chapman and Hall, London; Fielding, G.J., Babitsky, T., Brenner, M., Performance evaluation for bus transit (1993) Transportation Research, 19 A, pp. 73-82; Fried, H.O., Lovell, C.A., Schmidt, S.S., (1993) The Measurement of Productive Efficiency, , Oxford University Press, Oxford; Fu, L.M., (1994) Neural Networks in Computer Intelligence, , McGraw Hill, New York; Ganley, J., Cubbin, J., (1992) Public Sector Efficiency Measurement: Applications of Data Envelopment Analysis, , Elsevier; Gathon, H.J., Indicators of partial productivity and technical efficiency in the european urban transit sector (1989) Annals of Public and Cooperative Economics, 60, pp. 43-59; Hipel, K.W., McLeod, A.I., (1993) Time Series Modelling of Water Resources and Environmental Systems, , Elsevier, Amsterdam; Hornik, K., Stinchcombe, M., White, H., Universal approximation of an unknown mapping and its derivatives using multi-layer feedforward networks (1990) Neural Networks, 3, pp. 535-549; Jondrow, J., Lovell, C.A.K., Materov, I.S., Schmidt, P., On the estimation of technical inefficiency in the stochastic frontier production function model (1982) Journal of Econometrics, 19, pp. 233-238; Lovell, C.A., Production frontiers and productive efficiency (1993) The Measurement of Productive Efficiency, pp. 3-67. , ed. H. O. Fried, C. A. Lovell and S. S. Schmidt, Oxford University Press, Oxford; Markellos, R.N., Mills, T.C., Siriopoulos, C., (1996) Handbook of Neural Network Analysis with EXPO/NeuralNet™, , LMT, Cambridge, MA; Ostaszewski, A., (1993) Mathematics in Economics, , Blackwell, Oxford; Ripley, B.D., Statistical aspects of neural networks (1993) Networks and Chaos - Statistical and Probabilistic Aspects, pp. 40-123. , ed. O. E. Barndorff-Nielsen, J. L. Jensen, and W. S. Kendall, Chapman and Hall, London; Schwartz, G., Estimating the Dimension of a Model (1978) Annals of Statistics, 6, pp. 461-464; Smith, M., (1993) Neural Networks for Statistical Modelling, , Van Nostrand Reinold, New York; Weyman-Jones, T., Productive efficiency in a regulated industry (1991) Energy Economics, 2, pp. 116-122
Nº de páginas: 12
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Using BDI agents to improve driver modelling in a commuter scenario (2002)
Artigo em Revista Científica Internacional
Rosaldo J. F. Rossetti; Rafael H. Bordini; Ana L. C. Bazzan; Sergio Bampi; Ronghui Liu; Dirck Van Vliet
Using BDI agents to improve driver modelling in a commuter scenario (2002)
Artigo em Revista Científica Internacional
Rosaldo J. F. Rossetti; Bordini, RH; Bazzan, ALC; Bampi, S; Liu, R; Vliet, DV
Temporary user-centred networks for transport systems (2016)
Artigo em Revista Científica Internacional
Nunes, AA; Teresa Galvão Dias; Zegras, C; João Falcão e Cunha
Evaluating public transport efficiency with neural network models (1997)
Artigo em Revista Científica Internacional
Álvaro Costa; Markellos, RN
Dynamic stability metrics for the container loading problem (2015)
Artigo em Revista Científica Internacional
Galrao Ramos, AG; José Fernando Oliveira; Jose Fernando Goncalves; Lopes, MP

Ver todas (6)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-08-21 às 19:46:46 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias