Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Deep Learning-Based Localization Approach for Autonomous Robots in the RobotAtFactory 4.0 Competition

Publicações

Deep Learning-Based Localization Approach for Autonomous Robots in the RobotAtFactory 4.0 Competition

Título
Deep Learning-Based Localization Approach for Autonomous Robots in the RobotAtFactory 4.0 Competition
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2024
Autores
Klein, LC
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Mendes, J
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Braun, J
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Martins, FN
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
de Oliveira, AS
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Paulo Gomes da Costa
(Autor)
FEUP
Wörtche, H
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Lima, J
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Ata de Conferência Internacional
Páginas: 181-194
3rd International Conference on Optimization, Learning Algorithms and Applications (OL2A)
Ponta Delgada, PORTUGAL, SEP 27-29, 2023
Indexação
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citações
Publicação em Scopus Scopus - 0 Citações
Outras Informações
ID Authenticus: P-010-2VV
Abstract (EN): Accurate localization in autonomous robots enables effective decision-making within their operating environment. Various methods have been developed to address this challenge, encompassing traditional techniques, fiducial marker utilization, and machine learning approaches. This work proposes a deep-learning solution employing Convolutional Neural Networks (CNN) to tackle the localization problem, specifically in the context of the RobotAtFactory 4.0 competition. The proposed approach leverages transfer learning from the pre-trained VGG16 model to capitalize on its existing knowledge. To validate the effectiveness of the approach, a simulated scenario was employed. The experimental results demonstrated an error within the millimeter scale and rapid response times in milliseconds. Notably, the presented approach offers several advantages, including a consistent model size regardless of the number of training images utilized and the elimination of the need to know the absolute positions of the fiducial markers.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 14
Documentos
Não foi encontrado nenhum documento associado à publicação.
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-25 às 02:39:49 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico