Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Using Recurrent Neural Networks to improve initial conditions for a solar wind forecasting model

Publicações

Using Recurrent Neural Networks to improve initial conditions for a solar wind forecasting model

Título
Using Recurrent Neural Networks to improve initial conditions for a solar wind forecasting model
Tipo
Artigo em Revista Científica Internacional
Ano
2024
Autores
Barros, FS
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Graça, PA
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Lima, JJG
(Autor)
FCUP
Pinto, RF
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Villa, M
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Revista
Vol. 133
ISSN: 0952-1976
Editora: Elsevier
Outras Informações
ID Authenticus: P-010-3ZN
Abstract (EN): Solar wind forecasting is a core component of Space Weather, a field that has been the target of many novel machine-learning approaches. The continuous monitoring of the Sun has provided an ever-growing ensemble of observations, facilitating the development of forecasting models that predict solar wind properties on Earth and other celestial objects within the solar system. This enables us to prepare for and mitigate the effects of solar wind-related events on Earth and space. The performance of some simulation-based solar wind models depends heavily on the quality of the initial guesses used as initial conditions. This work focuses on improving the accuracy of these initial conditions by employing a Recurrent Neural Network model. The study's findings confirmed that Recurrent Neural Networks can generate better initial guesses for the simulations, resulting in faster and more stable simulations. In our experiments, when we used predicted initial conditions, simulations ran an average of 1.08 times faster, with a statistically significant improvement and reduced amplitude transients. These results suggest that the improved initial conditions enhance the numerical robustness of the model and enable a more moderate integration time step. Despite the modest improvement in simulation convergence time, the Recurrent Neural Networks model's reusability without retraining remains valuable. With simulations lasting up to 12 h, an 8% gain equals one hour saved per simulation. Moreover, the generated profiles closely match the simulator's, making them suitable for applications with less demanding physical accuracy.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 9
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

The impact of heterogeneous distance functions on missing data imputation and classification performance (2022)
Artigo em Revista Científica Internacional
Santos, MS; Pedro Henriques Abreu; Fernandez, A; Luengo, J; Santos, J
NORMO: A new method for estimating the number of components in CP tensor decomposition (2020)
Artigo em Revista Científica Internacional
Fernandes, S; Fanaee T, H; João Gama
Exploring Design smells for smell-based defect prediction (2022)
Artigo em Revista Científica Internacional
Sotto Mayor, B; Elmishali, A; Kalech, M; Rui Abreu
Enhancing data stream predictions with reliability estimators and explanation (2014)
Artigo em Revista Científica Internacional
Zoran Bosnic; Jaka Demsar; Grega Kespret; Pedro Pereira Rodrigues; Joao Gama; Igor Kononenko

Ver todas (12)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-08-31 às 18:44:47 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias