Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Recognizing Abnormal Heart Sounds Using Deep Learning

Publicações

Recognizing Abnormal Heart Sounds Using Deep Learning

Título
Recognizing Abnormal Heart Sounds Using Deep Learning
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2017
Autores
Rubin, J
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Rui Abreu
(Autor)
FEUP
Ganguli, A
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Nelaturi, S
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Matei, I
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Sricharan, K
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Indexação
Outras Informações
ID Authenticus: P-00M-YMP
Abstract (EN): The work presented here applies deep learning to the task of automated cardiac auscultation, i.e. recognizing abnormalities in heart sounds. We describe an automated heart sound classification algorithm that combines the use of time-frequency heat map representations with a deep convolutional neural network (CNN). Given the cost-sensitive nature of misclassification, our CNN architecture is trained using a modified loss function that directly optimizes the trade-off between sensitivity and specificity. We evaluated our algorithm at the 2016 PhysioNet Computing in Cardiology challenge where the objective was to accurately classify normal and abnormal heart sounds from single, short, potentially noisy recordings. Our entry to the challenge achieved a final specificity of 0.95, sensitivity of 0.73 and overall score of 0.84. We achieved the greatest specificity score out of all challenge entries and, using just a single CNN, our algorithm differed in overall score by only 0.02 compared to the top place finisher, which used an ensemble approach.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 6
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

Classifying Heart Sound Recordings using Deep Convolutional Neural Networks and Mel-Frequency Cepstral Coefficients (2016)
Artigo em Livro de Atas de Conferência Internacional
Rubin, J; Rui Abreu; Ganguli, A; Nelaturi, S; Matei, I; Sricharan, K
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-04 às 19:45:35 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias