Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Plant Disease Diagnosis Based on Hyperspectral Sensing: Comparative Analysis of Parametric Spectral Vegetation Indices and Nonparametric Gaussian Process Classification Approaches

Publicações

Plant Disease Diagnosis Based on Hyperspectral Sensing: Comparative Analysis of Parametric Spectral Vegetation Indices and Nonparametric Gaussian Process Classification Approaches

Título
Plant Disease Diagnosis Based on Hyperspectral Sensing: Comparative Analysis of Parametric Spectral Vegetation Indices and Nonparametric Gaussian Process Classification Approaches
Tipo
Artigo em Revista Científica Internacional
Ano
2024
Autores
Pereira, MR
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Verrelst, J
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Caicedo, JPR
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Fernando Tavares
(Autor)
FCUP
Mario Cunha
(Autor)
FCUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Revista
A Revista está pendente de validação pelos Serviços Administrativos.
Título: AGRONOMY-BASELImportada do Authenticus Pesquisar Publicações da Revista
Vol. 14
Página Final: 493
ISSN: 2073-4395
Outras Informações
ID Authenticus: P-00Z-ZND
Abstract (EN): Early and accurate disease diagnosis is pivotal for effective phytosanitary management strategies in agriculture. Hyperspectral sensing has emerged as a promising tool for early disease detection, yet challenges remain in effectively harnessing its potential. This study compares parametric spectral Vegetation Indices (VIs) and a nonparametric Gaussian Process Classification based on an Automated Spectral Band Analysis Tool (GPC-BAT) for diagnosing plant bacterial diseases using hyperspectral data. The study conducted experiments on tomato plants in controlled conditions and kiwi plants in field settings to assess the performance of VIs and GPC-BAT. In the tomato experiment, the modeling processes were applied to classify the spectral data measured on the healthy class of plants (sprayed with water only) and discriminate them from the data captured on plants inoculated with the two bacterial suspensions (108 CFU mL-1). In the kiwi experiment, the standard modeling results of the spectral data collected on nonsymptomatic plants were compared to the ones obtained using symptomatic plants' spectral data. VIs, known for their simplicity in extracting biophysical information, successfully distinguished healthy and diseased tissues in both plant species. The overall accuracy achieved was 63% and 71% for tomato and kiwi, respectively. Limitations were observed, particularly in differentiating specific disease infections accurately. On the other hand, GPC-BAT, after feature reduction, showcased enhanced accuracy in identifying healthy and diseased tissues. The overall accuracy ranged from 70% to 75% in the tomato and kiwi case studies. Despite its effectiveness, the model faced challenges in accurately predicting certain disease infections, especially in the early stages. Comparative analysis revealed commonalities and differences in the spectral bands identified by both approaches, with overlaps in critical regions across plant species. Notably, these spectral regions corresponded to the absorption regions of various photosynthetic pigments and structural components affected by bacterial infections in plant leaves. The study underscores the potential of hyperspectral sensing in disease diagnosis and highlights the strengths and limitations of VIs and GPC-BAT. The identified spectral features hold biological significance, suggesting correlations between bacterial infections and alterations in plant pigments and structural components. Future research avenues could focus on refining these approaches for improved accuracy in diagnosing diverse plant-pathogen interactions, thereby aiding disease diagnosis. Specifically, efforts could be directed towards adapting these methodologies for early detection, even before symptom manifestation, to better manage agricultural diseases.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 25
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Smartphone Applications Targeting Precision Agriculture Practices-A Systematic Review (2020)
Outra Publicação em Revista Científica Internacional
Mendes, J; Pinho, TM; Filipe Neves Santos; Sousa, JJ; Peres, E; Boaventura Cunha, J; Mario Cunha; Morais, R
Legume Biofortification and the Role of Plant Growth-Promoting Bacteria in a Sustainable Agricultural Era (2020)
Outra Publicação em Revista Científica Internacional
Roriz, M; Carvalho, SMP; Castro, PML; Vasconcelos, MW
Temperature-Based Grapevine Ripeness Modeling for cv. Touriga Nacional and Encruzado in the Dao Wine Region, Portugal (2021)
Artigo em Revista Científica Internacional
Rodrigues, P; Pedroso, V; Goncalves, F; Reis, S; Santos, JA
QVigourMap: A GIS Open Source Application for the Creation of Canopy Vigour Maps (2021)
Artigo em Revista Científica Internacional
Lia Duarte; Ana Teodoro; Sousa, JJ; Padua, L
Potential Non-Invasive Technique for Accessing Plant Water Contents Using a Radar System (2021)
Artigo em Revista Científica Internacional
Luís Carlos Santos; Filipe Neves dos Santos; Raul Morais; Cândido Duarte

Ver todas (14)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-26 às 12:42:23 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico