Abstract (EN):
This paper introduces a tomography-like method for assessing grape maturation. It analyses inner tissue spectra through point-of-measurement (POM) sensing. A multi-block hierarchical principal component analysis (MHPCA) algorithm was used for the spectral reconstruction of total grapes (skin, pulp, and seed). Two grape cultivars, Loureiro (white; n = 216) and Vinhao (red; n = 205) were measured at 12 dates after veraison (DAV). The reconstructed spectra showed no significant differences (p < 0.001) from the originals for both grapes. Loureiro had better statistical metrics (Person's correlation coefficient (r) values for: total grape: 0.99, skin: 1; pulp: 1, seed: 0.94) than Vinhao (r values for: total grape: 0.92, skin: 0.92; pulp: 0.95, seed: 0.95). Using self learning artificial intelligence (SL-AI), the following parameters were predicted for both grapes: soluble solids content (%; MAPE <13%), puncture force (N; MAPE <29%), chlorophyll content (a.u.; MAPE <29%), and anthocyanin content (a.u.; MAPE <17%, Vinhao only). When comparing observed values with predicted skin, pulp, and seed spectra, Vinhao showed no statistical differences for most parameters, except pulp chlorophyll on one DAV in the final maturation stage. The same was done with the Loureiro cultivar. Although Loureiro mostly showed no statistical differences in assessed parameters across tissues and dates, variations were found in pulp and skin chlorophyll content and puncture force. This tomography-like approach based on tissue maturation can help viticulturists to access instant data on grape maturation, supporting informed decision-making and promoting more sustainable agricultural practices.
Idioma:
Inglês
Tipo (Avaliação Docente):
Científica
Nº de páginas:
13