Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Machine Learning Data Markets: Evaluating the Impact of Data Exchange on the Agent Learning Performance

Publicações

Machine Learning Data Markets: Evaluating the Impact of Data Exchange on the Agent Learning Performance

Título
Machine Learning Data Markets: Evaluating the Impact of Data Exchange on the Agent Learning Performance
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2023
Autores
Baghcheband, H
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Carlos Soares
(Autor)
FEUP
Ata de Conferência Internacional
Páginas: 337-348
22nd EPIA Conference on Artificial Intelligence (EPIA)
Azores, PORTUGAL, SEP 05-08, 2023
Outras Informações
ID Authenticus: P-00Z-M0C
Abstract (EN): In recent years, the increasing availability of distributed data has led to a growing interest in transfer learning across multiple nodes. However, local data may not be adequate to learn sufficiently accurate models, and the problem of learning from multiple distributed sources remains a challenge. To address this issue, Machine Learning Data Markets (MLDM) have been proposed as a potential solution. In MLDM, autonomous agents exchange relevant data in a cooperative relationship to improve their models. Previous research has shown that data exchange can lead to better models, but this has only been demonstrated with only two agents. In this paper, we present an extended evaluation of a simple version of the MLDM framework in a collaborative scenario. Our experiments show that data exchange has the potential to improve learning performance, even in a simple version of MLDM. The findings conclude that there exists a direct correlation between the number of agents and the gained performance, while an inverse correlation was observed between the performance and the data batch sizes. The results of this study provide important insights into the effectiveness of MLDM and how it can be used to improve learning performance in distributed systems. By increasing the number of agents, a more efficient system can be achieved, while larger data batch sizes can decrease the global performance of the system. These observations highlight the importance of considering both the number of agents and the data batch sizes when designing distributed learning systems using the MLDM framework.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 12
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

Machine Learning Data Market Based on Multiagent Systems (2024)
Artigo em Revista Científica Internacional
Baghcheband, H; Carlos Soares; reis, lp
Shapley-Based Data Valuation Method for the Machine Learning Data Markets (MLDM) (2024)
Artigo em Livro de Atas de Conferência Internacional
Baghcheband, H; Carlos Soares; reis, lp
Machine Learning Data Markets: Trading Data using a Multi-Agent System (2022)
Artigo em Livro de Atas de Conferência Internacional
Baghcheband, H; Carlos Soares; reis, lp
CNP-MLDM: Contract Net Protocol for Negotiation in Machine Learning Data Market (2024)
Artigo em Livro de Atas de Conferência Internacional
Baghcheband, H; Carlos Soares; reis, lp
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-11-19 às 21:14:47 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico