Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Semantic Frame Induction as a Community Detection Problem

Publicações

Semantic Frame Induction as a Community Detection Problem

Título
Semantic Frame Induction as a Community Detection Problem
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2019
Autores
Ribeiro, E
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Teixeira, AS
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Ribeiro, R
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
de Matos, DM
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Ata de Conferência Internacional
Indexação
Outras Informações
ID Authenticus: P-00R-CJB
Abstract (EN): Resources such as FrameNet provide semantic information that is important for multiple tasks. However, they are expensive to build and, consequently, are unavailable for many languages and domains. Thus, approaches able to induce semantic frames in an unsupervised manner are highly valuable. In this paper we approach that task from a network perspective as a community detection problem that targets the identification of groups of verb instances that evoke the same semantic frame. To do so, we apply a graph-clustering algorithm to a graph with contextualized representations of verb instances as nodes connected by an edge if the distance between them is below a threshold that defines the granularity of the induced frames. By applying this approach to the benchmark dataset defined in the context of the SemEval shared task we outperformed all the previous approaches to the task. © 2020, Springer Nature Switzerland AG.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Documentos
Não foi encontrado nenhum documento associado à publicação.
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-28 às 18:18:19 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico