Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Scheduling wagons to unload in bulk cargo ports with uncertain processing times

Publicações

Scheduling wagons to unload in bulk cargo ports with uncertain processing times

Título
Scheduling wagons to unload in bulk cargo ports with uncertain processing times
Tipo
Artigo em Revista Científica Internacional
Ano
2023
Autores
Ferreira, C
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Pedro Amorim
(Autor)
FEUP
Pigatti, A
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Revista
Vol. 160
ISSN: 0305-0548
Editora: Elsevier
Indexação
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citações
Publicação em Scopus Scopus - 0 Citações
Outras Informações
ID Authenticus: P-00Y-XBE
Abstract (EN): Optimising operations in bulk cargo ports is of great relevance due to their major participation in international trade. In inbound operations, which are critical to meet due dates, the product typically arrives by train and must be transferred to the stockyard. This process requires several machines and is subject to frequent disruptions leading to uncertain processing times. This work focuses on the scheduling problem of unloading the wagons to the stockyard, approaching both the deterministic and the stochastic versions. For the deterministic problem, we compare three solution approaches: a Mixed Integer Programming model, a Constraint Programming model and a Greedy Randomised algorithm. The selection rule of the latter is evolved by Genetic Programming. The stochastic version is tackled by dispatching rules, also evolved via Genetic Programming. The proposed approaches are validated using real data from a leading company in the mining sector. Results show that the new heuristic presents similar results to the company's algorithm in a considerably shorter computational time. Moreover, we perform extensive computational experiments to validate the methods on a wide spectrum of randomly generated instances. Finally, as managing uncertainty is fundamental for the effectiveness of these operations, distinct strategies are compared, ranging from purely predictive to completely reactive scheduling. We conclude that re-scheduling with high frequency is the best approach to avoid performance deterioration under schedule disruptions, and using the evolved dispatching rules incur fewer deviations from the original schedule.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 16
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Unequal individual genetic algorithm with intelligent diversification for the lot-scheduling problem in integrated mills using multiple-paper machines (2015)
Artigo em Revista Científica Internacional
Marcos Furlan; Bernardo Almada Lobo; Maristela Santos; Reinaldo Morabito
The use of frontier techniques to identify efficient solutions for the Berth Allocation Problem solved with a hybrid evolutionary algorithm (2019)
Artigo em Revista Científica Internacional
Flávia Barbosa; Priscila C. Berbert Rampazzo; Akebo Yamakami; Ana S. Camanho
The Probabilistic Travelling Salesman Problem with Crowdsourcing (2022)
Artigo em Revista Científica Internacional
Santini, A; Viana, A; Klimentova, X; Joao Pedro Pedroso
The challenges of estimating the impact of distributed energy resources flexibility on the TSO/DSO boundary node operating points (2018)
Artigo em Revista Científica Internacional
João Silva; Jean Sumaili ; Ricardo J. Bessa; Luís Seca ; Manuel Matos; Vladimiro Miranda

Ver todas (43)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-26 às 14:23:33 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico