Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Identification of pegmatites zones in Muiane and Naipa (Mozambique) from Sentinel-2 images, using band combinations, band ratios, PCA and supervised classification

Publicações

Identification of pegmatites zones in Muiane and Naipa (Mozambique) from Sentinel-2 images, using band combinations, band ratios, PCA and supervised classification

Título
Identification of pegmatites zones in Muiane and Naipa (Mozambique) from Sentinel-2 images, using band combinations, band ratios, PCA and supervised classification
Tipo
Artigo em Revista Científica Internacional
Ano
2023
Autores
Gemusse, U
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Ana Teodoro
(Autor)
FCUP
Outras Informações
ID Authenticus: P-00Y-KCN
Abstract (EN): Remote sensing has been widely used in Geological Sciences for different applications, such as to identify geological and mineralogical objects and surface alteration changes. This study aimed to analyze the Sentinel-2 potential to detect pegmatite bodies and associated alteration zones in Muiane and Naipa in Mozambique. Different remote sensing techniques were applied to a Sentinel-2 image: RGB combinations, band ratios, principal component analysis (PCA), and supervised image classification algorithms such as the Maximum Likelihood Classifier (MLC) and Support Vector Machine (SVM). MLC was used as a benchmark classifier to evaluate the performance of SVM because MLC is the predominant algorithm employed in remote sensing classification studies. For that, several statistical metrics based on the confusion matrices were computed, namely accuracy, Kappa index, precision, recall, and f-score, among others. This study allows identifying the location of pegmatites by direct identification and segregating between hydrothermally altered zones and non-altered areas through remote sensing data/techniques, supported by field data. The field campaigns allowed for validating the results obtained and verifying the pegmatites identified using Sentinel-2 data that were not previously mapped. Moreover, reflectance spectroscopy studies in the laboratory were conducted on the samples collected in the field campaigns allow to validate the adequacy of the methodology proposed in this study. The results show that the precise identification of pegmatite targets requires a high spatial resolution such as Sentinel-2 images. Thus, with the integration of high spatial and spectral resolution data, a potential level of precision and accuracy can be achieved in the study areas.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 18
Documentos
Nome do Ficheiro Descrição Tamanho
1-s2.0-S2352938523001040-main Artigo em revista internacional 22666.52 KB
Publicações Relacionadas

Da mesma revista

Remote sensing imagery segmentation in object-based analysis: A review of methods, optimization, and quality evaluation over the past 20 years (2023)
Outra Publicação em Revista Científica Internacional
Ez zahouani, B; Ana Teodoro; El Kharki, O; Jianhua, L; Kotaridis, I; Yuan, XH; Ma, L
Mapping Cashew Orchards in Cantanhez National Park (Guinea-Bissau) (2022)
Artigo em Revista Científica Internacional
Pereira, SC; Lopes, C; Joao Pedro Pedroso
Improving NDVI by removing cirrus clouds with optical remote sensing data from Landsat-8 ¿ A case study in Quito, Ecuador (2019)
Artigo em Revista Científica Internacional
Alvarez Mendoza, CI; Ana Teodoro; Ramirez Cando, L
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-09 às 13:58:43 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico